证明是数学思想中*重要,也是*开拓性的特征之一。没有证明,*无法谈论真正的数学。本书讲述了证明的演变及其在数学中的重要作用和启发意义。从古希腊几何学时代开始,涵盖代数、微积分、集合、数论、拓扑、逻辑等几乎全部数学分支中的证明故事。我们将看到欧几里德、康托尔、哥德尔、图灵等数学大师的精彩发现和发明。这本书不是教材,它是在讲数学的历史,更是在讲数学思想的演变。作者揭示了数学学习和研究的底层方法和逻辑,让读者看到在数学中什么定理可以被证明,如何证明?什么问题可以(或无法)被解决?为数学研究和发展打开全新的视角。
本书是*数学家保罗·哈尔莫斯的自传,也是他为自己所处的“数学时代”写下的历史掠影。哈尔莫斯因在泛函分析、遍历理论、测度论、布尔代数理论等领域的贡献著称于世。他不仅对整个数学领域的研究保持着浓厚兴趣,而且始终关注着数学世界的人与事。读者可在本书中看到上百位数学家的身影。哈尔莫斯讲述了他们的趣闻轶事,为他们拍照留念,让读者对这群数学家产生*而感性的认识。这本书堪称20世纪的数学“社会史”。同时,作者谈到如何学习、如何做研究、如何营造良好的学习和学术环境,讲述了自己对数学的理解,以*身经历告诉读者,什么是真正的数学家和数学研究,以及怎样才能成为一名数学家。 本书适合数学爱好者、数学研究人员,以及对数学史和科学史感兴趣的大众读者阅读。
本书以通俗易懂的语言和鲜活的案例,阐述博弈论的基本理论框架和主要知识点。全书分成四大部分:第一部分主要论述在同步一次囚徒困境博弈中,尽管合作对整体而言是最优的,但不合作却是个体的最优策略。书中对困境的机理及其在现实社会生活中的具体表现做了分析,还介绍了同步一次博弈的其他一些有趣场景和案例。第二部分讨论重复博弈,围绕如何从困境走向合作展开,重点介绍在重复博弈中,自利行为和长期主义可以催生合作这一重要原理及其具体应用。同时还介绍了混合策略的基本思想。第三部分讨论序贯博弈。参与者行动有先后顺序,那些与自身利益相冲突的决策,会在其他参与者行动之后发生变化。参与者可以通过承诺行动改变竞争对手的预期,以促使其选择对自己有利的行动。第四部分是不完全、不对称信息下的博弈,主要阐
数学是理解和探索世界的工具,无论是学生、工程师还是科学家,*有能力也应该学会数学建模的方法和思想,学会如何用正确的思维方式搭建解答问题的阶梯。这本书旨在将数学作为一门语言、一种方法来*读者学习数学。读者也将看到如何理解、传承并调用现代科学的知识、传统和范式。数学建模不仅是数学学习和研究的过程,更是我们认识世界、理解生活的方法之一,而在实践数学建模的过程中,我们将深刻感受到数学的趣味性、严谨性和解决问题的无穷威力,正如亨利?庞加莱的名言所讲,这将是一次面向心智的雅致统一的追求。
以上ISBN信息均为平台自动生成,部分商品参数可能存在些许误差,商品准确参数详情可咨询客服。本店为新华书店总部直营店铺,所售图书均为正版,请放心购买! 基本信息 书 名 烧掉数学书:重新发明数学 出版社 湖南科学技术出版社 作 者 【美】杰森·威尔克斯著 出版时间 20201001 I S B N 9787571004071 定价 98 开 本 16开 185*260 装 帧 平装 版 次 1 字 数 360 (千字) 页 数 404 读者范围
20世纪80年代,美国新墨西哥州的群山沙漠间,一场科学与思维的革命正在酝酿之中。这场科学运动的神经中枢是一个名为圣塔菲研究所的智库。聚集在这里的研究人员形形色色,既有梳着马尾辫的研究生,也不乏诺贝尔奖得主——物理学奖得主默里·盖尔曼和菲利普·安德森,经济学奖得主肯尼斯·阿罗。但他们有一个共同的愿景,那就是探寻一种底层的统一性,一个能揭示自然界和人类世界普遍复杂性的通用理论框架。他们相信,从过去20 年在神经网络、生态学、人工智能和混沌理论等领域的智识发酵中,他们已经掌握了创建新框架的数学工具。他们相信,对这些思想的应用使他们能够以一种前所未有的方式理解这个世界自发的、自组织的动力学——并有可能对经济、商业甚至政治行为产生巨大影响。他们相信,圣塔菲研究所正在打造第壹个严谨的、替代线
内容简介 在这本书中,《魔鬼数学》作者、几何学家乔丹·艾伦伯格带领我们展开了一场海阔天空的探索之旅,旅程的终极意义是:通过发现几何学的力量,我们能够更好地思考每一个现实问题,重新认识我们身边的世界。 一根吸管有几个洞?尼姆游戏的必胜玩法是什么?数字货币交易中的公钥和私钥是怎么生成的?我们如何做才能阻止一场流行病肆虐世界?人工智能在学下国际象棋方面得心应手,而在学习朗读句子方面却力不从心,这是为什么?古希腊的黄金分割比能用来预测股票市场的走势吗?如果你的孩子真想学会思考的方法,他们应该在学校学些什么?所有这些问题都跟几何学有关,千真万确。 对大多数人来说,几何学是一门充斥着枯燥刻板习题的课程,高中一毕业,它就和你的牙套、你曾经追过的流
本书为日本东京大学数学教学成果的总结性作品,由时任东京大学理学院院长弥永昌吉教授策划,教学经验丰富的斋藤正彦教授执笔创作,是日本久负盛名的线性代数图书。本书内容结合了东京大学教养学部的线性代数课程实践,以及东京大学数学系诸多教授的探讨与思索。本书内容循序渐进,结构严谨,从直观描述开始,逐步引入形式描述,注重从几何角度引导读者理解线性代数的本质,是帮助读者学习线性代数、加深对线性代数理解的数学教材。 本书适合高中生、大学生和对线性代数感兴趣的读者阅读。
方程是一种重要的数学思想,对丰富问题解决策略、提高问题解决能力、发展数学素养有着非常重要的意义。许多中学生在解题过程中难以寻找等量关系,感到列方程(组)很困难,究其原因*是小学期间没有打牢基础。这套书*的亮点*是将传统的学习方程的刷题模式换成了孩子们喜欢的冒险漫画形式,寓学于乐,让孩子们在升级打怪的过程中,潜移默化地掌握方程组的知识点和逻辑运用,在击败反派的同时增强自信,从而消除对方程的畏惧心理。
为了帮助报考管理类研究生入学考试的考生更好地复习、备考数学,编者按照考试大纲的要求,结合众多考生的基础,全新变革编写本书.在保持优点、特色的前提下,继续定位精品辅导教材,努力体现创新教学理念,激发学生自主学习能力,打破常规应考模式,提高灵活应试能力. 全书按照考试大纲的要求分为算术、代数、几何、数据分析部分,共十一章. 每章分五个小节,节大纲解读,利用数字化导图及历年真题分布表引导读者洞察考向,一览考纲全貌;第二节重点考向和第三节难点考向,将模块、考点及考向进行数字化编码,将考点讲解与考向例题紧密结合,可以快速夯实基础,拾起多年遗忘的考点,让你居高临下,解决考试难点;第四节基础自测题和第五节综合提高题,助你融会贯通,掌握知识脉络,让考试尽在掌握之中.本书后附上一套过关检测题和近三
在这本与生活常识紧密相关的数学手账中,我们将学会正确看待数学学习中的恐惧与挫折感,体会数学思维带来的快乐。作者凭借丰富的教学经验和感悟,借助引人入胜的数学知识和300多幅手绘插画,用简单的语言讲述了对称、模糊逻辑、彭罗斯图案、无穷、孪生质数猜想、博弈论、费马大定理等有趣的数学话题,借此鼓励读者学会处理数学学习中的困难与变化,找到适合自己的思考方法。无论是学生还是数学爱好者,都能在阅读本书的过程中获得学习数学的勇气与自信,唤醒自己“心中的数学家”。 本书适合对数学感兴趣的大众读者阅读。
偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进一步学习与研究偏微分方程理论做准备。
本卷收录了吴文俊的《几何定理机器证明的基本原理》一书。书中论述初等几何机器证明的基本原理,证明了奠基于各种公理系统的各种初等几何,只需相当于乘法交换律的某一公理成立,大都可以机械化。因此在理论上,这些几何的定理证明可以借肋于计算机来实施。可以机械化的几何包括了多种有序或无序的常用几何、投影几何、非欧几何与圆几何等。 全书共分六章。前两章是关于几何机械化的预备知识,集中介绍了常用几何;后四章致力于几何的机械化问题。第3章为几何定理证明的机械化与Hilbert机械化定理,第4,5章分别为(常用)无序几何的机械化定理和(常用)有序几何的机械化定理,第6章阐述各种几何的机械化定理。 本书可供数学工作者和计算机科学工作者以及高等院校有关专业的师生参考。
考研数学复习一般分为基础阶段、强化阶段和冲刺阶段,其主体及重点在于强化阶段。在这个阶段考生首先要用相对集中的时间做大量的题目训练,在练习之后考生应做好总结工作,对经典型、针对性、预测性的题目多加分析,由此本书应运而生。本书以考研命题所使用的所有题目源头为依据,精心挑选和编制了数百道题目。利于考生在复习过程中开拓思路,练习分析问题,解决问题的能力。本书内容包括高等数学(微积分)、线性代数、概率论与数理统计,题目类型有选择题、填空题、解答题构成。
本书较为全面、系统地介绍了矩阵特征值定位的基本理论、方法及其相关问题。全书共五章,包括预备知识、Gersgorin圆盘定理与严格对角占优矩阵、Brauer卵形定理与双严格对角占优矩阵、几类结构矩阵的特征值定位与估计(包括非负矩阵谱半径的估计、随机矩阵非1特征值的定位与估计、Toeplitz矩阵特征值的定位等)以及与矩阵特征值定位相关的其他问题(如严格对角占优矩阵的Schur补、B-矩阵与实特征值的估计、线性互补问题解的误差估计、矩阵伪谱定位、区间矩阵特征值定位、非线性特征值定位、高阶张量特征值定位)等。同时,我们较为详尽地给出了上述各问题的相关文献,以便于读者参阅,还以附录形式给出了部分图的MATLAB代码。 本书可作为高等院校数学各专业研究生和理工科相关专业研究生矩阵理论及应用课程的教学用书或教学参考书,也可作为
汤家凤2023考研数学汤家凤复习大全数学二汤家凤复习全书数二 可搭配汤家凤辅导讲义
本书为数学二,科目包括:高等数学部分;线性代数部分;每章均由以下四个部分构成:一是内容概要与重难点提示,使考生明确本章的重难点。二是考核知识要点讲解,本部分对大纲所要求的知识点进行了全面阐述。三是常考题型及其解题方法与技巧,对常见题型进行归纳总结。四是题型训练及参考答案。
本书系统介绍传染病动力学的数学建模思想、典型研究方法和主要研究成果。主要内容涉及具有时滞、接种免疫、疾病复发、类年龄结构、空间扩散和非线性发生率的传染病动力学模型以及具有胞内时滞、CTL免疫反应、抗体免疫反应、游离病毒扩散、细胞感染年龄和非线 染率的宿主体内HIV(HBV)感染动力学模型的建立和研究,也特别介绍有关艾滋病、乙肝和结核病等重要传染病在 外的**研究结果。本书重点介绍传染病动力学的数学建模方法、理论分析和数值模拟方法,内容丰富、方法实用,反映了当前传染病动力学在 外的**研究动态和作者的**研究成果。通过阅读本书,既能使一般读者尽快地了解和掌握传染病动力学的建模思想和理论分析方法,又能将具有一定基础的读者尽快带到相关研究领域的前沿。
本书系统介绍传染病动力学的数学建模思想、典型研究方法和主要研究成果。主要内容涉及具有时滞、接种免疫、疾病复发、类年龄结构、空间扩散和非线性发生率的传染病动力学模型以及具有胞内时滞、CTL免疫反应、抗体免疫反应、游离病毒扩散、细胞感染年龄和非线 染率的宿主体内HIV(HBV)感染动力学模型的建立和研究,也特别介绍有关艾滋病、乙肝和结核病等重要传染病在 外的**研究结果。本书重点介绍传染病动力学的数学建模方法、理论分析和数值模拟方法,内容丰富、方法实用,反映了当前传染病动力学在 外的**研究动态和作者的**研究成果。通过阅读本书,既能使一般读者尽快地了解和掌握传染病动力学的建模思想和理论分析方法,又能将具有一定基础的读者尽快带到相关研究领域的前沿。
暂无内容简介。。。。。。
本书精心命制和整合了大约1000道考研数学复习的题目,其主要来源是: (1)与考研数学命题密切相关的重要资料.这里包括考研数学命题前的全国征题、部分考研命题的备考题(所谓考研数学B卷考题)、命题人退下来以后命制的题目、某些全国大学数学教学基地的考试题库等,这些题一般会综合了多个知识点,有一定的难度和区分度. (2)前苏联、全国、各省市大学生数学竞赛试题的改编题.对经典的大学数学竞赛题如何进行改编,使其适合考研的风格和特点,这既是对未来考题的预测(因为这些竞赛题中有很多题目是“潜在的考试题”),也是本书的一大特色.试题改编是颇费一番周折的,本书中一些重要题目后的“注”,看似题外之话,但是字斟句酌、涵义深刻,请读者仔细品味,必会有所收获.当然,基于竞赛基础,这些题一般也会是综合题,难度高、区分