在人工智能的浪潮中,大语言模型技术正以前所未有的速度改变着我们的生活与工作方式。作为这个领域的后起之秀,DeepSeek凭借其开源与高性能的技术路线在2024年年末崭露头角,并迅速成为全球领先的人工智能应用平台之一。本书循序渐进地介绍了DeepSeek相关的各方面知识、经验和技巧,系统梳理了DeepSeek的结构化提示词技巧,并附有大量的模板实例。此外,本书介绍了DeepSeek的特色功能玩法、场景实战应用、高级应用技巧,以及DeepSeek工具集成和本地部署等相关知识。本书力求使零基础读者轻松掌握DeepSeek的使用方法,并学以致用、融会贯通。
本书全面且深入地呈现了深度学习领域的知识体系,系统梳理了该领域的核心知识,阐述了深度学习的关键概念、基础理论及核心思想,剖析了当代深度学习架构与技术。全书共 20 章。本书首先介绍深度学习的发展历程、基本概念及其在诸多领域(如医疗诊断、图像合成等)产生的深远影响;继而深入探讨支撑深度学习的数学原理,包括概率、标准分布等;在网络模型方面,从单层网络逐步深入到多层网络、深度神经网络,详细讲解其结构、功能、优化方法及其在分类、回归等任务中的应用,同时涵盖卷积网络、Transformer 等前沿架构及其在计算机视觉、自然语言处理等领域的独特作用。本书还对正则化、采样、潜变量、生成对抗网络、自编码器、扩散模型等关键技术展开深入分析,阐释其原理、算法流程及实际应用场景。对于机器学习领域的新手,本书是全面且
《图解人工智能》从基础概念、历史沿革、基础算法、代表性应用、**研究进展、跨学科交叉成果等多个方面深入介绍人工智能。为满足不同程度学习者的学习需求,全书以图片为主并辅以少量文字说明,每节配有 小清爱提问 在线视频,具有初等阅读能力的读者(包括中小学生)可以轻松获得人工智能的基础知识和全局视野;每一节还包括扩展学习资料、深入阅读材料和编程实践资源供高等阅读能力的读者(包括大学生和教师)自学提高。为配合课堂教学,全书每一节都配有PPT课件、附加视频资料、互动演示程序等教学资源。对应不同知识背景的读者,本书有速读、专业、教学3种建议阅读模式。 期待更多人能借此书产生对人工智能学科的探索热情! 本书封面贴有清华大学出版社防伪标签,无标签者不得销售。版权所有,侵权必究。
内容简介 自人工智能(AI)的概念诞生之日起,科学家们就热衷于探讨它的发展路径。第一阶段毫无疑问是计算智能,经过半个多世纪,AI在运算能力和记忆方面早已超越人类。第二阶段,是感知智能,让机器可以看得懂听得懂这个世界。科学界认为,尚未到来的第三阶段,是认知智能,甚至提到一个词:认知时代。 我们来到大模型时代或者是生成式人工智能时代了吗?如果我们此时此刻正身处这个时代,那上一个是什么时代? 有人说,大规模预训练已经过时,AI要实现具身化,具备推理能力,接着自我意识相伴而生。具身智能揭开了人类驯服机器的科学路径,小到在分子或原子上进行操作的纳米机器,大到震天撼地的巨型机械,无不乖乖地服从人类的操控指令,替代或者协助人类完成复杂的任务。 具有自我意识的AI是更安全还是更不安全?我们需要开始认真考虑
《从掷骰子到人工智能:趣谈概率》一书极具启发性,学习概率统计的入门书,书中介绍的著名趣味概率问题包括赌博点数分配问题、赌徒谬误、高尔顿钉板、几何概型悖论、酒鬼漫步、德国坦克问题、博士相亲、中国餐馆过程等。通过讨论这些简单有趣的例子,让读者了解概率统计中的重要概念,诸如随机变量、期望值、贝叶斯定理、大数定律、中心极限定理、马尔可夫过程、深度学习等等。概念的引入思路清晰,重要知识有拓展,许多重要概念和理论都有直观的解释和应用场景。让年轻人从游戏和趣题中学到知识,吸引他们踏进基础科学、人工智能、信息技术的大门。
本书是一本全面探索DeepSeek大语言模型应用的实用指南,涵盖了近200个精心设计的实用案例,以 场景思维 为核心,从用户实际需求出发,系统地展示了DeepSeek如何在日常工作、学习和生活的各个方面发挥智能助手的作用。 全书共分为20章,内容丰富且有层次: (1)从基础工具使用和提示词工程入门,到内容创作、知识工作、创意设计等应用场景,涵盖了多个专业领域(医疗、金融、法律、心理)的深度应用。 (2)介绍了日常生活、创业自媒体、行业赋能的多维度实践,提供了API集成方案和30个精选高频场景的深度解析; (3)每个实例都针对特定用户群体的痛点和需求,提供了具体、可操作的解决方案,帮助读者快速掌握如何将DeepSeek融入工作流程,真正实现AI赋能。 书中不仅关注 如何使用 ,更着眼于 为何使用 和 何时使用 ,帮助读者建立对AI辅助工具的系统性
本书是深度学习领域的入门教材,系统地整理了深度学习的知识体系,并由浅入深地阐述了深度学习的原理、模型以及方法,使得读者能全面地掌握深度学习的相关知识,并提高以深度学习技术来解决实际问题的能力。 全书共15章,分为三个部分。 分为机器学习基础:第1章是绪论,介绍人工智能、机器学习、深度学习的概要,使读者全面了解相关知识;第2~3章介绍机器学习的基础知识。 第二部分是基础模型:第4~6章分别讲述三种主要的神经网络模型:前馈神经网络、卷积神经网络和循环神经网络;第7章介绍神经网络的优化与正则化方法;第8章介绍神经网络中的注意力机制和外部记忆;第9章简要介绍一些无监督学习方法;第10章介绍一些模型独立的机器学习方法,包括集成学习、自训练、协同训练、多任务学习、迁移学习、终身学习、元学习等。 第三部分
本书以MATLAB R2021为平台,以实际应用为背景,通过叙述 函数 经典应用相结合的形式,深入浅出地介绍了MATLAB在人工智能中的经典应用相关知识。全书共11章,主要内容包括MATLAB环境与操作、数据分析实战、科学计算实战、数据建模实战、统计性数据分析实战、机器学习算法实战、深度学习算法实战、控制系统分析与设计实战、神经网络信息处理实战、最优化方法实战、智能算法分析与实现实战。通过本书的学习,读者在领略到MATLAB简捷的同时将感受到利用MATLAB实现智能数据应用的领域广泛,功能强大。 本书可作为高等学校相关专业本科生和研究生的教学用书,也可作为相关领域科研人员、学者、工程技术人员的参考用书。
本书是一本针对初学者介绍人工智能基础知识的书籍。本书采用通俗易懂的语言讲解人工智能的基本概念、发展历程和主要方法,内容涵盖人工智能的核心方法,包括什么是人工智能、神经网络(深度学习)是如何实现的、计算机是如何学会下棋的、计算机是如何找到**路径的、如何用随机算法求解组合优化问题、统计机器学习方法是如何实现分类与聚类的、专家系统是如何实现的等,每种方法都配有例题并给出详细的求解过程,以帮助读者理解和掌握算法实质,提高读者解决实际问题的能力。 此外,本书可以帮助人工智能的开发人员理解各种算法背后的基本原理。书中的讲解方法和示例,有助于相关课程的教师讲解相关概念和算法。 总之,这是一本实用性强、通俗易懂的人工智能入门教材,适合不同背景的读者学习和使用。
《AI人工智能:发展简史 技术案例 商业应用(第2版)》通过 知识+案例 两条线索展开介绍,力图帮助读者全方位、多角度地了解人工智能。 纵向知识线包括3大认识、3大价值、3大盈利模式、3种营销变化、5个时代、5大商业模式、8大技术、18个领域、8种研究成果、5种热卖商品等,针对人工智能的基本概念、发展阶段、研究价值、市场状况、基础技术、发展前景、营销应用、热门领域、影响意义、热卖商品和研究成果等内容,向读者系统化地进行介绍。 横向案例线共包含12章专题内容,详解了18个领域的50多种智能产品及其应用,内容涉及智能家居、智能安防、无人驾驶、智能社交、智能生产、工业设计、电子商务、军事航天、法律预判、智能医疗、智能营销、智能理财、新零售、餐饮服务、物流运输、农业、智能教育、企业管理、5G技术等,同时通过100多个图解、190
OpenAI API是一个为开发者、企业和研究者打造的平台。通过这个API,用户可以轻松地融合和应用最前沿的AI技术,而无须独立训练模型或构建复杂的支持系统。这种便利性不仅加速了各类自然语言处理任务的实现(如文本创作和问答系统),还大大降低了开发和运营的成本。随着对OpenAI不断地进行研究和优化,API用户始终能够享受到最新的技术成果。此外,API还为各个行业的创新者开辟了新的可能性,并助力各种新应用和服务的诞生。总之,OpenAI API不仅推动了AI技术的广泛应用,还为广大用户提供了一种简单、高效的方式来探索和实现AI的潜能。 本书分4篇,共19章,涵盖的主要内容有OpenAI API的基础知识、OpenAI API详解,使用OpenAI API实现智能问答、在线客服、教育辅导、编程助手、情感咨询、心理咨询、内容创作、旅行规划、法律咨询、多语言翻译、市场分析、文
本书介绍了人工智能发展过程中涌现出的思想以及经典技术。本书共12章,内容结构大致可以分为4部分:第一部分(第1~3章),这部分为基础知识,简单介绍人工智能发展的历史与现状(第1章),数据编码技术(第2章)以及人工智能需要用到的数学知识(第3章);第二部分(第4~7章),经典人工智能,主要介绍经典人工智能算法(第4章),计算机博弈(第5章),逻辑与知识(第6章),智能体机器人技术(第7章);第三部分(第8~10章),机器学习技术,主要介绍回归算法(第8章)、分类算法(第9章)以及无监督学习典型算法(第10章);第四部分(第11、12章),主要介绍神经网络概念(第11章)以及深度学习技术(第12章)。 本书是一本介绍人工智能技术的初级读物,并不需要读者有深厚的计算机和数学基础,可以作为高等院校任何专业(不局限于计算机
本书深度探讨了构建和训练ChatGPT模型涉及的核心技术,以及ChatGPT在各种实际 应用中的作用。全书精心划分为三部分,其中第1章为第1部分,第2章为第2部分,第3 章和第4章为第3部分。首先,详细阐述了机器学习的历史演变与各种学习范式,同时也 揭示了在人工智能生成内容(AIGC)领域下,图像处理和自然语言处理技术的历史发 展趋势;接下来,对ChatGPT的运行机制和关键算法进行深度解析,包括大规模模型结 构、上下文学习、强化学习、涌现机制等,引导读者深刻理解ChatGPT的本质和相应算 法原理;最后,从应用角度出发,展示了ChatGPT在推动生产力变革方面的潜力,全面 解析了ChatGPT在科研、教育、出版、医疗等行业的影响和未来前景。阅读本书后,读 者可以获得对AIGC和ChatGPT的全面而深入的理解。 本书旨在服务不同层次的读者。对于初学者,它可作为一部理
内容上,本书力求系统地介绍基于深度学习的图文多模态信息处理技术,侧重介绍最通用、最基础的技术,覆盖了多模态表示、对齐、融合和转换等四大关键技术。同时也介绍了多模态信息处理领域的**发展前沿 多模态预训练模型。此外,为了让读者可以实践这些多模态深度学习技术,本书提供了四个完整的实战案例,分别对应多模态表示、对齐、融合和转换这四个关键技术。 具体而言,本书的内容分为四个部分:初识多模态信息处理、单模态表示、多模态信息处理的关键技术、多模态预训练模型。 第一部分包括两个章节:第1章介绍多模态信息的基本概念、难点、使用深度学习方法的动机、多模态信息处理的关键技术以及这些技术的发展历史,第2章介绍若干同时涉及图像和文本的多模态热门研究任务。 第二部分包括两个章节:第3和4章分别介绍了多模态信息处
当前,人工智能作为一项引领未来的颠覆性战略技术,已在经济、军事、社会等各领域广泛用,成为世界各国科技竞争和战略布局的重中之重。本书以人工智能的“起点、拐点、奇点、看不见的终点”为线,突出认知新思维、技术新发展、应用新构想,从人工智能前世今生、思维方法、大模型、机器学习、感知认知、人机交互、脑科学、机器人,以及无人智能作战和未来发展等多维度、多层次、多领域进行全面深入剖析。
本书从Python数据分析的基础知识入手,结合大量的数据分析示例,系统地介绍了数据分析与可视化方法,带领读者逐步掌握Python数据分析的相关知识,提高解决实际问题的能力。 本书共13章,主要内容包括数据分析与可视化概述、Python编程基础、NumPy数值计算基础、Pandas统计分析基础、Pandas数据载入与预处理、Matplotlib数据可视化基础、Seaborn可视化、pyecharts可视化、时间序列数据分析、SciPy科学计算、统计与机器学习、图像数据分析和综合案例实战等。 本书可作为各类高等院校数据科学与大数据、软件工程和计算机科学与技术等专业的教材,也可作为Python数据分析初学者和爱好者的参考书。
人工智能是近年来全球*为火热的研究领域之一,尤其是随着深度学习算法研究的突破,人工智能技术被应用到图片识别、机器翻译、语音助手、自动驾驶等一系列领域中,取得了前所未有的智能水平。深度学习算法涵盖的内容非常前沿和广袤,国内外出版的相关书籍并不算多,有些侧重于理论层面的推导,有些侧重于框架API的介绍,鲜有能结合深度学习算法理论和实战讲解的教材。为了使读者能够深刻理解深度学习算法精髓,本书以探索问题式叙述风格展开,从*简单的人工智能问题入手,一步步地引导读者分析和解决并发现新的问题,重温当年算法设计人员的探索之路。本书介绍了深度学习算法所需要的基础数学理论、TensorFlow 2.x框架的基本使用方法、回归问题、分类问题、反向传播算法、梯度下降算法、过拟合、全连接网络、卷积神经网络、循环神经网络、自