《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(辑)》是以美国大学生数学建模竞赛(MCM/ICM)赛题为主要研究对象,结合竞赛特等奖的论文,对相关的问题做深刻细致的解析与研究。本辑针对2007年及2008年MCM/ICM竞赛的6个题目:冰盖融化问题、数独谜题生成问题、医疗评估问题、选区划分问题、飞机就座问题以及肾移植问题进行了解析与研究。《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(辑)》内容新颖、实用性强,目前尚无同类作品。本书可作为指导学生参加美国大学生数学建模竞赛的主讲教材,也可作为本科生、研究生学习和准备全国大学生、研究生数学建模竞赛的参考书,同时可供研究相关问题的教师和研究生参考使用。
本书系统地介绍了非线性化问题的有关理论与方法,主要包括一些传统理论与经典方法,如非线性化问题的性理论,无约束优化问题的线搜索方法、共轭梯度法、拟牛顿方法,约束优化问题的可行方法、罚函数方法和SQP方法等,同时也吸收了新近发展成熟并得到广泛应用的成果,如信赖域方法、投影方法等.本书在编写过程中既注重基础理论的严谨性和方法的实用性,又保持内容的新颖性.该书内容丰富、系统性强,可作为运筹学专业的研究生和数学专业高年级本科生从事非线性化研究的入门教材或参考书,也可作为相关专业科研人员的工具参考书.
《建模的数学方法与数学模型》内容共分九章:章是数学模型概论,第二章是初等方法建模,第三章是微分法建模,第四章是差分方法建模,第五章是微分方程定性理论分析建模,第六章是线性规划方法建模,第七章是动态规划方法建模,第八章是层次分析法建模,第九章为图论方法建模。附录中给出了《建模的数学方法与数学模型》大部分图形的MAlLAB程序代码,以便更好地对图形验证分析。《建模的数学方法与数学模型》可作为高等院校本专科生数学建模课程、数学建模竞赛培训课程的,也可供高校师生和相关科技工作者参考。
智能优化混合算法是一种以某类优化算法为基础,融合其他智能算法或理论的混合算法,可用于求解各种工程问题优化解。本书系统讨论了现今应用较为广泛的几种智能优化混合算法,主要内容来源于作者多年的研究成果,使读者比较全面地了解智能优化混合算法的相关知识及应用。本书理论联系实际,集知识性、专业性、操作性、技能性为一体,对智能优化混合算法的原理、步骤、应用等进行了全面且详细的介绍。
《数学建模入门--125个有趣的经济管理问题》由杨桂元、李天胜编著,本书是数学在实际问题特别是在经济、管理问题中的应用实例,根据实际问题涉及的数学模型,编写了125个与大学数学教学内容相配套的数学模型应用实例,每一篇内容独立成文,以经济管理和日常生活中的问题为切入点,然后用数学方法求解,有前提有结论,并且对该篇应用的数学方法——理论依据和应用推广进行评注。全书分为4篇,分别是:篇微积分模型;第2篇线性代数模型;第3篇概率论模型;第4篇数理统计模。 《数学建模入门--125个有趣的经济管理问题》可作为高等院校学生学习数学建模的辅导用书,也可作为相关领域学者研究经济、管理问题时的参考读物。
本书系统地介绍了化的理论和计算方法,在编写上遵循循序渐进、由浅入深、注重概念、突出方法的原则。本书将化技术与计算机技术融为一体,对化技术的理论作丁适当深度的讨论,重点在于对概念和方法的论述;在应用方面,着重强调方法与应用的有机结合。 全书共十章,包括化问题总论、化问题数学基础、线性规划及其对偶问题、一维搜索法、常用无约束化方法、常用约束化方法、动态规划、多目标优化、现代优化算法简介、化问题程序设计方法等,其中前八章为传统优化算法,也是本书重点介绍的内容,一章还给出了部分优化问题的设计实例。 本书可作为数学类各专业本科高年级学生教材,也可供一般工科研究生以及数学建模竞赛参赛人员和工程技术人员参考。
本书是高分子物理的课教材,着重讲授高聚物材料的黏弹性和高弹性,并以相当篇幅介绍高聚物材料在大形变时的屈服行为、断裂现象以及高聚物熔体的流变力学行为,对高分子化学以及塑料、橡胶和纤维类,本书可作为研究生教材。 本书也可作为从事高聚物材料、加工、使用的有关工程技术人员的参考书。 本书章是专为化学系学生写的有关应力、应变及其相互关系的力学基础知识。从第2章开始以3章的篇幅着重介绍高聚物力学性能的时间依赖性;第5、6章介绍高聚物力学性能的温度依赖性和各种力学转变现象;对高聚物材料特有的高弹性,则辟有专门的章节(第7章)详加讨论。考虑到高聚物材料越来越多地作为结构材料应用于机械、建筑乃至高新技术领域中,第8、9章对有关高聚物材料使用中的屈服、破坏和断裂现象作了较多介绍。一章则是介绍高聚物熔
本书系统地介绍了非线性化问题的有关理论与方法,主要包括一些传统理论与经典方法,如非线性化问题的性理论,无约束优化问题的线搜索方法、共轭梯度法、拟牛顿方法,约束优化问题的可行方法、罚函数方法和SQP方法等,同时也吸收了新近发展成熟并得到广泛应用的成果,如信赖域方法、投影方法等. 本书在编写过程中既注重基础理论的严谨性和方法的实用性,又保持内容的新颖性.该书内容丰富、系统性强,可作为运筹学专业的研究生和数学专业高年级本科生从事非线性化研究的入门教材或参考书,也可作为相关专业科研人员的工具参考书.
本书是行为领域的经典之作,主题是合作的产生和进化。作者以组织的两轮“重复囚徒困境”竞赛为研究对象,结果发现在两轮竞赛中胜出的都是最简单的策略“一报还一报”。这一策略简洁明晰,具有善良性、宽容性、可激怒性和策略性,其出色的竞赛表现为我们了解个人、组织和国家间合作产生和进化提供了积极的前景,其结论在社会科学的诸领域产生了广泛深刻的影响,被广泛征引。