《IBM SPSS Modeler数据与挖掘实战》一书书主要包括两部分内容:在数据挖掘部分,重点介绍了各种数据挖掘方法的基本原理及应用,包括回归分析、时间序列分析、因子分析、决策树分析、判别分析、聚类分析、人工神经网络、贝叶斯网络以及社交网络分析等;在文本挖掘部分,重点介绍了文本挖掘的节点,以及具体的实现过程。每一章都详细介绍了数据和文本挖掘的基本原理和分析过程,同时在实例中也介绍了SPSS Modeler中大部分节点的使用方法及应用步骤。 本书提供了15个来自行业应用中的案例,旨在通过系统的工作案例使读者能够掌握应用技巧的同时,卓有成效地提升解决实际问题的能力。 本书对于高校理工学科、经济金融学科及数量分析方面的学生,以及数据挖掘和分析方面的研究人员和从业人员等,具有很强的可读性、可操作性与可使用性,尤其适合商业
回归分析在科学研究领域是最常用的统计方法。《回归分析》介绍了一些基本的统计方法,例如,相关、回归(线性、多重、非线性)、逻辑(二项、多项)、有序回归和生存分析(寿命表法、法以及回归)。后面的章节介绍了另外一些回归分析方法和模型,例如,个体生长曲线的建模、部分最小平方回归、岭回归、巢式病例对照研究。 《回归分析》对运用进行回归分析的介绍,目的是让读者对于这方面的基础知识有一个初步了解和掌握,有经验的读者藉此可在数据挖掘(例如,利用)领域独立地继续学习新知识。