暂无内容简介。。。。。。
暂无内容简介。。。。。。
《微习作里看世界》精心编撰六本套书,专为提升小学生写作能力。《稻花香里说丰年》聚焦日常写作,传授朋友圈文案撰写、读书分享窍门、采访录撰写要点及户外比赛描写技法;《这个节日,“社牛” 出没》针对春节、元宵节、清明节、端午节、中秋节等五大传统节日,给出场景描写妙招,助学生生动展现节日氛围;《热火朝天的劳动课》围绕学做家务、户外野炊等活动,细致讲解制作过程的描写要点;《含羞草,NO!NO!!NO!!!》着眼交际场景,为辩论赛发言、新闻稿编写等提供写作技巧;《把科学课写进微写作》为倡议书编写、体育赛事直播描述等表达方式提供技法指导;《会飞的兔子》为童话创作打开想象大门,教授学生人物设定、情节创设等编写技巧。六本书均以新颖朋友圈格式开篇,借师生对话框与图表,拉近师生距离,精准拆解写作难题、梳理
本书筛选石焕南教授发表的87篇论文,经重新编辑整理成书。主要介绍受控理论与不等式的基本内容及其新推广,重点介绍受控理论在解析不等式方面的应用,不仅包含国内外学者近年来所获得的大量研究成果,同时也包含作者近年研究的近期新成果。 本书适合大学生及受控理论与不等式研究人员参考阅读。
《数学分析中的典型问题与方法 第3版》 本书是为正在学习数学分析(微积分)的学生、准备报考研究生的读者以及从事这方面教学工作的教师编写的参考书籍。本书自1993年首次出版以来,历经25年,一直得到读者的热情赞赏和推崇。本书的中心内容是全面、系统地回答:数学分析到底有哪些基本问题?每类问题有哪些基本方法?每种方法有哪些代表性的题目?书中收录了传统典型习题和大量特色研究生入学统一考试试题,它们有相当难度,能检验读者的真实水平。本书的宗旨是讨论解题的思想方法。为此,对每种方法先以“要点”的形式作概述,再选取典型而有相当难度的例题,逐层剖析,分类讲解;然后通过反复训练,让读者从变化中领会不变的东西,达到“授人以渔”的目的。此外,对现行教材中比较薄弱、读者十分关心的部分内容,如上(下)极限、函数
暂无内容简介。。。。。。
本书主要论述了zeta和L函数之零点间距与大型紧典型群之随机元特征值间距之间的深层关系。这种称为Montgomery-Odlyzko定律的关系,对有限域上的zeta和L函数之宽类都成立。本书借鉴并描述了诸多不同的数学领域,从代数几何、模空间、单值性、等分布和Weil猜想,到关于紧典型群在维数趋于无穷的极限情况下的概率论,以及来自正交多项式和Fredholm行列式的相关技术。本书可供对有限域和局部域上的簇、zeta函数、极限理论和族结构感兴趣的研究生和科研人员阅读参考。
本书是一部综合性的物理学辞典,涵盖力学和理论力学、理论物理学、热学、热力学与统计物理学、声学、电磁学、光学、原子与分子物理学、无线电物理学、凝聚态物理学、等离子体物理学、原子核物理学、高能物理学、天体物理学、计算物理学、非线性物理学、化学物理、能源物理、经济物理、生物物理学、医学物理等学科,以常用、基础和重要的名词术语为基本内容,提供简短扼要的定义或概念解释,并有适度展开。正文后附有物理学大事件、常用物理量单位、常用物理学常数表等附录,并设有便于检索的外文索引、汉语拼音索引。
本书主要论述了zeta和L函数之零点间距与大型紧典型群之随机元特征值间距之间的深层关系。这种称为Montgomery-Odlyzko定律的关系,对有限域上的zeta和L函数之宽类都成立。本书借鉴并描述了诸多不同的数学领域,从代数几何、模空间、单值性、等分布和Weil猜想,到关于紧典型群在维数趋于无穷的极限情况下的概率论,以及来自正交多项式和Fredholm行列式的相关技术。本书可供对有限域和局部域上的簇、zeta函数、极限理论和族结构感兴趣的研究生和科研人员阅读参考。
万丈光芒的梦想 郭婷
暂无内容简介。。。。。。
高维数学物理问题的分数步方法是叙述和研究分数步法在求解多变量数学物理问题中的应用和数值分析。主要内容前四章基础理论部分,包括:对流扩散问题分数步数值方法基础,双曲型方程交替方向有限元方法,抛物型问题交替方向有限元方法和椭圆问题混合元交替方向有限元方法。后三章是实际应用部分,包括:两相渗流驱动问题的分数步方法,多层渗流耦合问题的分数步方法和渗流力学数值模拟中交替方向有限元方法。
运动生物力学是研究人体运动中力学规律的学科,它具有很强的应用性,其目标是提高运动成绩、预防运动损伤,并最终为增强人类运动能力与健康服务。本书按外部生物力学、内部生物力学、生物力学原理应用三大板块进行介绍,无论是在编排还是在力学内容的介绍顺序上都有其独到之处。同时,新版在前作的基础上增加了概念应用,为每一章中的原理提供了实际应用案例。此外,还更新了生物力学测量和分析方法的内容,方便读者了解近期新的技术前沿手段。 本书作为学习人体运动生物力学的经典之作,以通俗易懂、实践至上的方式介绍体育运动中生物力学的基础理论和实际应用,主要面向运动人体科学、运动训练和体育教育专业的学生、教师、科研人员,同时也适合从事体育训练和比赛的运动员、教练员、运动防护师阅读。