《数据库内核揭秘:存储引擎的设计与实现》深入探讨数据库存储引擎内部机制,详细阐述存储引擎在数据管理中的核心作用,包括数据的存储、检索和管理方式。 《数据库内核揭秘:存储引擎的设计与实现》共分为9章,内容从基础概念到高级技术,逐步深入,旨在为读者提供全面的理解框架。前两章为读者打下坚实的基础,介绍数据库系统的概览以及操作系统和硬件设备的相关知识。接下来的章节按照自底向上的逻辑顺序,深入探讨存储引擎的关键模块。第3章讲解数据在文件系统中的组织和存储方式。第4章聚焦于缓冲池的设计和缓存替换算法。作为存储引擎的核心,索引在本书占据了3章的篇幅(第5~7章),详细介绍哈希表、LSM树和B树家族。第8章讨论数据库系统中的故障恢复问题,重点介绍了ARIES算法及其应用。第9章关注事务的并发控制,包括多种并发控制算法
《数字化生存》描绘了数字科技为我们的生活、工作、教育和娱乐带来的各种冲击和其中值得深思的问题,是跨入数字化新世界的*指南。英文版曾高居《纽约时报》畅销书排行榜。 信息的DNA 正在迅速取代原子而成为人类生活中的基本交换物。尼葛洛庞帝向我们展示出这一变化的巨大影响。电视机与计算机屏幕的差别变得只是大小不同而已。从前所说的 大众 传媒正演变成个人化的双向交流。信息不再被 推给 消费者,相反,人们或他们的数字勤务员将把他们所需要的信息 拿过来 并参与到创造它们的活动中。信息技术的革命将把受制于键盘和显示器的计算机解放出来,使之成为我们能够与之交谈,与之一道旅行,能够抚摸甚至能够穿戴的对象。这些发展将变革我们的学习方式、工作方式、娱乐方式 一句话,我们的生活方式。犀利的见解使尼葛洛庞帝成为《连线》
本书从ChatGPT的基础原理讲起,逐步深入ChatGPT的基础使用和插件功能,并结合各种数据分析实战案例,重点介绍了ChatGPT在各种数据分析场景中的应用方法,让读者不但可以系统地学习ChatGPT相关知识,而且能对ChatGPT在数据分析中的实战应用有更为深入的理解。本书分为12章,涵盖的主要内容有:ChatGPT简介与基本原理;ChatGPT使用方法;ChatGPT插件应用;ChatGPT构建指标体系、ChatGPT 数据采集与清洗、ChatGPT探索性数据分析和可视化、ChatGPT推断性统计分析、ChatGPT预测分析、ChatGPT文本分析、ChatGPT分类和聚类分析、ChatGPT推荐算法、ChatGPT行业数据分析等的应用方法和实战项目案例。 本书内容通俗易懂、案例丰富、实用性强,特别适合对数据分析和人工智能感兴趣的读者,包括但不限于数据分析师、数据科学家、数据工程师、有数据分析需求的业务人员、研究人员、学生
《Hadoop海量数据处理》从Hadoop的基础知识讲起,逐步深入Hadoop分布式文件系统(HDFS)和MapReduce分布式编程框架的核心技术,帮助读者全面、系统、深入地理解Hadoop海量数据处理技术的精髓。本书在讲解技术原理时穿插大量的典型示例,并详解两个典型项目实战案例,帮助读者提高实际项目开发水平。 《Hadoop海量数据处理》共15章,分为4篇。第1篇Hadoop基础知识,包括大数据概述、Hadoop概述、Hadoop环境搭建与配置;第2篇Hadoop分布式存储技术,包括HDFS概述、HDFS基础操作、HDFS的读写原理和工作机制、Hadoop 3.x的新特性;第3篇MapReduce分布式编程框架,包括MapReduce概述、MapReduce开发基础、MapReduce框架的原理、MapReduce数据压缩、YARN资源调度器、Hadoop企业级优化;第4篇项目实战,包括Hadoop高可用集群搭建实战和统计TopN经典项目案例实战。 《Hadoop海量数据处理》通俗易懂、案
当应用于大型分布式数据集时,标准算法和数据结构可能会变慢或完全失效。选择专为大数据设计的算法可以节省时间、提高准确性并降低处理成本。《漫画算法与数据结构(大规模数据集)》将最前沿的研究论文提炼为实用的技术,用于绘制、流式传输并组织磁盘和云中的大规模数据集,十分独特。 大规模数据集的算法与数据结构为大型分布式数据引入了处理和分析技术。《漫画算法与数据结构(大规模数据集)》作为指南,包含了行业故事和有趣的插图,使复杂的概念也易于理解。在学习如何将强大的算法(如Bloom 过滤器、计数最小草图、HyperLogLog和LSM树)映射到你自己的用例时,将对真实世界的示例进行探索。 主要内容: ● 概率草图数据结构 ● 选择正确的数据库引擎 ● 设计高效的磁盘数据结构和算法 ● 大规模系统中的算法权衡 ● 有限空间资源下的百分
全书围绕IKCEST国际大数据竞赛,即IKCEST 一带一路 国际大数据竞赛暨百度 西安交大大数据竞赛展开,针对每次比赛内容进行深度解析,从任务、基础到冠军模型,以理论和代码相结合的方式,全流程深度剖析比赛过程。九次竞赛题均关注当年的热点领域和方向,分别是 人物关系 知识挖掘、提取子句中的核心实体、宠物分类、商家招牌分类、基于卫星遥感影像和用户行为的城市区域功能分类、高致病性传染病的传播趋势预测和基于车载影像的实时环境感知、 一带一路 重点语种法俄泰阿与中文互译、社交网络中多模态虚假信息甄别,涵盖了社交网络、计算机视觉、自然语言处理等大数据应用的热门领域。 本书可作为全国高等学校大数据及相关专业的教材,也可作为感兴趣的读者了解IKCEST国际大数据竞赛的参考书。
《极速Python:高性能编码、计算与数据分析》系统性地介绍了Python高性能编程的各种工具和方法,并重点讲解了Python在大数据中的应用。书中配有清晰的示例和详实的分析,可帮助读者熟练掌握NumPy和Pandas,实现高性能的数据存储和I/O。本书高屋建瓴、不留遗漏,读者学习本书后,能从代码到架构对系统进行整体优化。 主要内容 ● 使用Cython重构关键代码。 ● 设计健壮的数据结构。 ● 精简不同架构的代码。 ● 实现Python GPU计算。
《Power Query从入门到精通》从 Excel 处理大型数据的缺点开始讲起,逐步讲解了 Excel 和 Power BI 中的 Power Query 组件,并重点介绍了Power Query 的底层 M 语言的应用知识。 《Power Query从入门到精通》分为 10 章,主要讲解了 Power Query 的入门知识和数据集成、Power Query 的 M 语法规则系列知识,针对 Power Query 如何实现数据清洗和重构系列知识做了详细的讲解,还重点介绍了目前 Power Query 的各类内置函数的功能,后介绍了如何利用自定义函数实现复杂的数据处理和重构过程。 《Power Query从入门到精通》内容通俗易懂,案例丰富,实用性强,特别适合入门级数据分析人员学习,也适合进阶阅读,相信通过阅读《Power Query从入门到精通》,读者对数据分析过程中的清洗和重构会有一个新的认识。
本书以 BI 负责人的视角介绍 BI 分析师的核心工作和应具备的核心技能,并分析 BI 创造价值的专题,理论和实例并重。全书分为四部分: 第一部分(第 1、2 章)为 BI 概述与团队组建,从介绍 BI 分析的基本概念说起,包含BI 职责与数据驱动的概述,以及组建团队时需要考虑的能力模 型、团队选型、团队管理。第二部分(第 3、4 章)为 BI 体系搭建基础知识,包括数据获取与管理,指标体系的概念、设计模型与使用场景。第三部分(第 5 ~ 9 章)为 BI 创造价值专题,包括增长、价值主张、盈利、体验、风控五大专题。第四部分(第 10、11 章)为回顾与展望,从衣、食、住、行、学五个方面回顾数据已经带来的变化与未来可预期的变化,最后从进化的视角探讨应对人工智能范式转移的策略。 对于想要通过数据驱动业务、改善决策质量的互联网从业者来说,本书应该
本书系统讲述数据仓库的基本概念、基本原理以及建立数据仓库的方法和过程。主要内容包括:决策支持系统的发展、数据仓库环境结构、数据仓库设计、数据仓库粒度划分、数据仓库技术、分布式数据仓库、ElS系统和数据仓库的关系,外部和非结构化数据与数据仓库的关系、数据装载问题、数据仓库与Web、ERP与数据仓库以及数据仓库设计的复查要目。 本书是数据仓库之父撰写的关于数据仓库的 权威著作,既可作为相关专业的研究生教材,也是数据仓库的研究、开发和管理人员的指南。
算力、数据、AI已经成为驱动当今社会技术发展的三架马车,而算力也从传统的超级计算向云超算的方向发展。本书旨在探讨当前超级计算与云计算的融合而给算力带来的新的发展,介绍当前在算力领域的一些实践和探索,从理论到工程,帮助读者了解超级计算的关键技术与未来发展,从而更好地应用和发展高性能技术。
Elasticsearch是一款高性能的文档数据库,广泛应用于分布式搜索和分析引擎等相关领域,本书首先介绍了数据建模的通用设计原理,然后针对Elasticsearch 介绍了文档数据库建模的特点和要求,例如和设计模式有关的实现、注意事项,以及实践过程中的注意点等。 本书的两位作者,一位是资深的Elasticsearch 专家,一位是建模领域的大师,联合为读者呈现了这本著作。如果你是一名希望扩展Elasticsearch 建模技能的读者,或者是一名了解Elasticsearch 但需要提高模式设计技能的从业人员,推荐阅读本书。
本书是一本系统介绍Clickhouse的指导型工具书,全书总共分为11章: 第1章 介绍ClickHouse的由来、发展历程、核心特点与核心特点。第2~6章 介绍了ClickHouse基础使用部分,包括整体架构、如何安装、数据定义、数据引擎、数据查询和函数的特性和使用方法。第7~9章介绍了ClickHouse高级特性部分,包括数据库管理操作,数据分片、数据副本和高可用的特性和使用方法。第10~11章介绍了如果自己手动实现ClickHouse中间件的思路和示例,同时也介绍了几款可视化工具与ClickHouse集成的方法。
随着物联网、云计算、大数据与人工智能等技术的蓬勃发展,计算服务逐渐从计算密集型向数据密集型(Data Intensive)转变。高性能、高通量的数据服务关键技术成为智慧城市、智能制造、智慧农业等国家重大需求解决方案的核心基础。并行与分布式数据处理的概念启发于上世纪80年代,源自讨论在内存及二级存储极为有限的条件下如何跨越 内存墙 ,完成计算任务的优化技术。而今,互联网与私有网络数据指数级增长、数据服务的事务性需求复杂多变、跨地域数据同步需求动态不统一、如何应对当前及未来大数据服务及其上的人工智能计算对并行与分布式数据服务提出了新的问题与挑战。本书从并行与分布式数据服务的基础理论、事务模型、数据处理语言等基础内容,并进一步讨论分布式数据一致性模型及全观性的数据处理架构方面的先进及实用的研究及系统软件
大数据时代的武器装备情报分析在信息技术特别是人工智能技术飞速发展的推动下,正面临新挑战、呈现新特点、孕育新模式。如何将大数据分析技术与武器装备情报这对具有天然底层关联的东西结合起来研究,有很多维度可以破解。本书从情报大数据分析技术维度出发,着眼大数据背景下的情报类型需求,构建情报分析技术体系架构,剖析快速决策技术、噪声数据处理技术、概念漂移处理技术的底层和应用,并通过综合案例加以应用。 本书以推进武器装备情报大数据分析技术发展为出发点,力求为情报分析、大数据分析、武器装备研发等领域的科学研究提供有益参考。
数据作为生产要素已经被提升至国家战略层面,如何激活数据要素、体现数据价值,如何有效利用数据赋能数字化转型,成为当前炙手可热的问题。本书厘清了数据治理、数据管理和数字化转型的关系,介绍了数据治理核心工作中经常出现的问题和优秀实践,明确了数字化转型的核心内容、方法路径和评估机制,通过大型企业数据治理或数字化转型案例为读者提供有价值的参考。本书适合首席执行官、首席信息官、首席数据官等从事企业管理和数据管理工作的人员阅读,有助于提升对数据治理和数字化转型的认识,为在组织中有效开展数据治理和数字化转型工作提供思路和借鉴。
本书围绕数据中心业务如何经营这一主题展开论述,以数据中心产业演变为切入点,围绕“布局-建设-服务”三大核心环节,针对数据中心产业面临的集群化布局、低碳化建设、智能化服务的机遇与挑战,通过变革中的数据中心产业、数据中心产业面临的挑战、数据中心布局之道、数据中心低碳建设之道、数据中心智能服务之道、数据中心产业政策实施之道、新形态数据中心经营之道等内容剖析原因、洞察规律、研讨案例、搭建模型,为相关经营主体给出了专业务实的策略。 本书实用性强,内涵丰富,采用情景对话方式编写,可读性强,具备较高参考价值。 本书可供通信运营商、第三方专业服务商、跨界服务商等各类数据中心运营主体的从业人员阅读,也可供主管数据中心建设与运营的政府部门的工作人员阅读。
《Power BI商务智能数据分析》是一本教你用Microsoft Power BI分析处理经营业务数据的教程。《Power BI商务智能数据分析》从职场实战出发,精选作者线下培训课程精华,能够帮助企事业单位各部门数据分析人员,通过图形化工具界面,轻松完成大数据处理与可视化交互分析。 《Power BI商务智能数据分析》共分为5章,帮助你从商业智能、数据可视化分析的*新技术入门;按照数据分析流程,逐步完成数据清洗与预处理、建立数据分析模型、可视化报表设计、在线报表发布等工作。Microsoft Power BI以互联网思维打造产品,桌面端免费,每月迭代更新,本书中的Power BI桌面版与Online版操作界面以2020年更新版本为主。 《Power BI商务智能数据分析》适合企事业单位数据分析人员阅读。
本书不是一本关于数据管理的 如何做 的书(如规范数据属性或是创建数据库),而是一本关于数据管理 如何思考 的书。本书将心理学和哲学与数据管理巧妙的融合在一起。将心理学和哲学学科与数据管理结合在一起,以创造有关我们如何感知和管理信息的知识。书中阐述了当今数据库系统通过数据来捕获现实世界的方式及缺陷,作者运用非常清晰的逻辑、仔细地描述了信息系统中所表示的现实世界的各个方面。对系统中所使用的数据模型、语言、语义和现实世界描述下的哲学问题进行了深刻的检视,对这些核心概念、其对信息系统的影响,是坊间遍寻不到的。这本书的价值在于批判性地探索解决现实世界的信息系统建模方法,这是一本令读者愉悦并具有启发性的佳作。适合从事数据建模、大数据、数据管理的人士阅读。