《数据库系统概念》是数据库系统方面的经典教材之一,其内容由浅入深,既包含数据库系统基本概念,又反映数据库技术新进展。本书基于该书第7版进行改编,保留其中的基本内容,压缩或删除了一些高级内容,更加适合作为国内高校计算机及相关专业本科生数据库课程教材。
本书从Power BI的基础功能讲起,逐步深入到Power BI进阶实战,以系统化的实操步骤和丰富的实际案例让读者快速入门Power BI数据分析,掌握Power BI在多个业务领域的实际应用。全书共8章:商业智能与数据分析概述;Power BI简介;数据分析与可视化制作全过程;Power BI数据预处理;Power BI数据建模;Power BI数据可视化;Power BI在线服务;Power BI数据分析实战案例。 本书通俗易懂、循序渐进、内容全面、讲解详细,配备全套数据集、教学课件和学习视频,既适合读者自学Power BI数据分析与可视化,也适合大专院校作为教材,更适合从事销售、产品、电商运营、仓储物流、财务管理、人力资源等岗位的职场人士提升技能。
本书与以往统计学中的概率论略有不同,添加了一些复杂数据类型的概率基础知识和模拟计算中的相关概率知识。具体安排如下所述。本书共分6章。第1章为概率与计数,基本内容是随机事件、概率空间、计数方法、概率的确定方法。第2章为条件概率,基本内容是条件概率与乘法公式、事件的独立性、全概率公式与贝叶斯公式。第3章为随机变量,基本内容是随机变量及其分布函数、随机变量的分类、二维随机向量、随机变量的独立性、随机变量函数的分布。第4章为常用的概率分布,基本内容是常用的离散型随机变量、常用的连续型随机变量、随机数的产生。第5章为随机变量的数字特征,基本内容是数学期望、方差和协方差、矩和矩母函数、条件期望。第6章为不等式和极限定理,基本内容是概率不等式、大数定律及其应用、中心极限定理。
本书是一本系统介绍Clickhouse的指导型工具书,全书总共分为11章: 第1章 介绍ClickHouse的由来、发展历程、核心特点与核心特点。第2~6章 介绍了ClickHouse基础使用部分,包括整体架构、如何安装、数据定义、数据引擎、数据查询和函数的特性和使用方法。第7~9章介绍了ClickHouse高级特性部分,包括数据库管理操作,数据分片、数据副本和高可用的特性和使用方法。第10~11章介绍了如果自己手动实现ClickHouse中间件的思路和示例,同时也介绍了几款可视化工具与ClickHouse集成的方法。
教材系统地介绍文本数据挖掘的相关概念,利用Python作为工具进行相关试验,其内容主要包括:文本挖掘产生的背景及发展;文本挖掘的概念、文本模型表示、文本内容的预处理,包括分词、去停用词以及特征抽取;文本相似度的概念等。介绍文本分类的概念及常用方法,如KNN算法、SVM算法等,并对分类结果进行评价;在介绍文本聚类聚类的概念时是,同样介绍聚类常用算法,如K均值算法、层次聚类法、密度聚类法等,作为有文本分类、文本聚类的应用,*后给出了信息抽取、社会网络中的实体关系抽取和事件抽取。
Power BI是微软推出的商业智能分析工具,它融合了数据准备、数据分析、数据可视化到报告协作分享的整个数据处理流程,帮助用户上手数据分析。 本书从实用的角度出发,结合作者本人的学习经验,从*基础的Power BI架构和操作界面开始,先通过一个小示例体验Power BI的强大和便捷,然后按照数据处理的流程和难易程度,分别介绍数据准备模块Power Query、数据建模以及Power BI数据分析语言DAX、可视化图表制作、丰富的交互方式和报表设计,*后用一个完整的分析示例带读者全面认识Power BI数据处理流程。 不论读者是学生、职场人士还是自由职业者,不论从事的领域是运营、财务、人力、管理还是电商,只要在平时的学习和工作中需要处理大量信息,分析各种数据,你就适合阅读本书学习Power BI,即使之前没有任何基础,它也可以帮你快速上手,提升自身竞争力。
本书介绍了数据链的基本概念、发展历程和趋势,重点分析了Link-4、Link-11、Link-16和Link-22数据链的系统组成、工作模式、技术特点等内容,并以Link-16数据链为重点,全面阐述了该数据链的信道共享机制、时间同步技术、传输消息类型、封装结构、信号波形等内容,给出了多网、导航、中继、距离扩展等功能实现方法;以数据链关键技术为主线,详细论述了数据链的消息格式、信息传输、网络协议、通信安全等方面相关知识,剖析了数据链的本质。
大数据审计已经成为目前审计领域研究与应用的热点。本书按照从常用电子数据审计方法到大数据审计方法的思路,不仅系统地分析了电子数据审计的理论知识(特别是大数据审计),还重点结合实际案例和具体操作,从审计数据采集、审计数据预处理和审计数据分析等电子数据审计的关键步骤出发,系统地分析了如何开展电子数据审计(特别是大数据审计)。附录中设计了9个实验模块(包括3个大数据审计实验模块),满足了开设实验课程的需要。 本书可作为高等院校审计、会计和信息管理等专业的教材,也可作为审计从业人员的专业培训教材和业务学习资料。
本书全面介绍了预测性分析相关方法,不仅直观地阐述了相关概念,还给出了现实的示例问题和真实的案例研究 包括从失败项目获得的经验教训。 本书理论和实践内容相对平衡,便于读者加深理解。 全书共9章,外加一个附录。 第1章为分析导论, 第2章为预测性分析和数据挖掘导论, 第3章介绍预测性分析的标准流程, 第4章介绍预测性分析的数据和方法, 第5章介绍预测性分析算法, 第6章探讨预测性建模中的高阶主题, 第7章介绍文本分析、主题建模和情感分析, 第8章介绍预测性分析使用的大数据, 第9章介绍深度学习和认知计算, 附录展望了商业分析和数据科学工具的前景。 本书适合计算机科学、数据科学和商业分析领域的相关从业人员阅读。
本书系统地介绍了图数据库的历史由来、建模方法、工作原理和一些真实的用户用例,详细地说明了图数据解决的是什么样的问题,并以Neo4j数据库和Cypher查询语言为例,阐述了图数据库的建模方法和领域用例,还介绍了图数据库的工作原理以及一些实用的图论算法。本书适合开发人员和数据库管理人员了解和学习图数据库时阅读,作为一门新的知识和独特的数据库领域来拓宽视野,也适合提供解决方案的负责人了解行业动向和新的解决问题的方式。通过阅读本书,读者可以对图数据库这一领域有一个透彻的了解。
强化学习是一类重要的机器学习方法,在很多领域得到了成功的应用,*近几年与深度学习结合起来,进一步推动了人工智能的发展?本书首先介绍了强化学习的基本原理,然后介绍典型的强化学习算法,包括时序差分? SARSA? Q-Learning? DeepQ-network? Double DQN?竞争网络结构? Rainbow? Actor-Critic? A2C? A3C? TRPO和PPO等,每种算法基本上利用了主流的开源机器学习框架TensorFlow,使用Python编程进行实现?此外,还介绍了一些上述算法的应用?本书可以使读者快速理解强化学习的基本知识,并通过简单的案例加深对算法的理解?本书适合对强化学习感兴趣的普通高校师生以及相关专业人员阅读? Copyright ? Packt Publishing 2018First published in the English language under the title “Deep Learning with TensorFlow-SecondEdition- ( 9781788831109)” Copyright in the Chinese language( simplified characters) ? 2020 China Machine PreesThis title is published in China b
本书以数据库应用系统实现为线索,内容除数据库技术外,还涵盖系统分析、设计、开发和部署方法,并引入 互联网 思维和热点技术。全书以一个完整的 e学习 系统实际案例驱动,采用MySQL和ASP.NET为实验环境,帮助读者通过实际应用理解数据库应用系统的相关知识和开发方法,掌握实践技能,综合运用前沿信息技术实现领域创新应用。本书提供丰富的教学资源,可以登录华信教育资源网(www.hxedu.com.cn)免费获取相关资源包,也可以扫描书中的二维码获取相关资源或观看演示视频。本书通俗易懂、实例鲜活、技术先进,可作为各类高等学校数据库技术、信息系统设计的入门教材,或者作为计算机基础教育较高层次课程的教材,也可以作为数据库应用系统开发实践的技术参考书。
本书主要内容包括:(1) 提出了分布式的随机次梯度投影算法;(2) 提出了异步广播的分布式次梯度随机投影算法;(3) 提出了分布式随机坐标块次梯度投影算法;(4) 提出了分布式随机坐标块条件梯度算法;(5) 提出了量化信息与随机网络拓扑的扩散小均方算法;(6) 提出了分布式随机次梯度在线算法;(7) 提出了差分隐私的分布式随机次梯度在线优化算法;(8) 提出了分布式条件梯度在线学习算法。本书选材广泛、内容新颖,适合数学、控制、计算机等专业的本科生及研究生,适合从事应用数学、计算数学、机器学习等研究领域的科技人员。
本书主要内容包括:网络数据库涉及的基础知识,网络数据库的体系结构及相应的运行平台的构建与配置,SQL Server数据库技术及SQL语句的使用,HTML标签语言及VBScript脚本的应用,ASP程序设计及Web数据库的访问技术,基于Web的网上教学信息管理系统综合案例的实现过程,包括系统的分析与设计、功能模块设计、数据模型的建立、后台数据库的构建及系统中各个功能模块的实现。本书强调以网络数据库编程为核心,而不依赖于网页的编辑环境(如FrontPage、Dreamweaver等软件),遵循开发网络数据库应用系统的完整过程来组织各个章节的内容。书中的内容深入浅出,讲解翔实,配有相应的例题,实用性较强。本书可作为高等学校网络数据库技术、Web技术或动态网页设计等相关课程的教材,也可供相关科技工作者阅读参考。
本书介绍了数据工程的基本概念和理论基础,围绕数据资源建设的规划和管理问题,介绍数据资源规划和管理的概念、特征、作用和功能,系统介绍了数据资源规划理论的发展过程、核心思想基础、主流方法体系和具体实施步骤,以及数据资源管理涉及的治理、质量、集成等理论知识、支撑平台、关键技术和主流工具。本书内容划分为数据工程基础篇、数据资源规划篇、数据资源管理篇三个部分,其中数据工程基础篇涵盖数据工程概述、数据标准、数据模型等内容,数据资源规划篇涵盖数据资源规划理论、规划方法、需求分析、模型构建、实践与工具等内容,数据资源管理篇涵盖数据治理、数据质量管理、数据集成、数据中台等内容。 本书既可以作为高等院校信息管理与信息系统、信息资源管理、大数据工程以及计算机信息管理等专业本科生的教材,还
Kibana是广泛地应用在数据检*和数据可视化领域的ELK中的一员。本书专门介绍Kibana,通过不同的用例场景,带领读者全面体验Kibana的可视化功能。全书共9章,主要包括数据驱动架构简介、安装和配置Kibana 5.0、用Kibana进行业务分析、用Kibana进行日志分析、用Kibana和Metricbeat进行指标分析、探*Kibana中的Graph、定制Kibana的Timelion、用Kibana进行异常检测、为Kibana开发自定义插件等内容。书中包括丰富的示例,可以帮助读者解决各种常见的数据可视化问题。本书适合想要学习如何用Elastic Stack部署数据驱动架构,特别是如何用Kibana对那些Elasticsearch*引的数据进行可视化的开发人员、运维团队、业务分析师和数据架构师阅读。
数据科学是一门新兴的热门科学,国外一流大学纷纷设立同名课程,相应的专业、课程及书籍也深受欢迎。本书是国内部系统阐述数据科学的重要专著,填补了国内此领域的空白。本书在结构设计和内容选择上不仅充分借鉴了国外著名大学设立的相关课程以及全球畅销的外文专著,也考虑到了国内相关课程定位与专业人才的培养需求。本书共包括8个部分(基础知识、数据预处理、数据统计、机器学习、数据可视化、数据计算、数据管理以及R编程),既涵盖了数据科学的基本内容,又避免了与相关课程的低级重复。每章设有综合例题,做到理论学习与动手操作相结合。例题均采用R语言完成数据科学的特定任务。每章的首尾配有 导读 与 小结 ,便于教师的教学和学生的自学。 习题 部分以主动数据收集和分析的开放题目为主,旨在帮助学生提高自我学习能力。书后附
《数据库原理及应用(Access版 第3版)》从一个Access数据库应用系统实例――学生管理系统入手,系统地介绍数据库的基本原理与Access各种主要功能的使用方法,主要包括数据库的基本原理和相关概念,关系数据库的基本设计方法,数据库的建立,数据表、SQL语言、查询、窗体、宏、报表,以及VBA程序设计和数据库编程技术。 本书内容全面,结构完整,深入浅出,图文并茂,通俗易懂,可读性、可操作性强,既可以作为各类高校学生学习数据库原理及应用的教材,也可作为相关领域技术人员的参考用书或培训教材。
《私有云存储系统搭建与应用》主要内容大致分为四个部分:第壹部分(第1~3章)介绍Swift存储系统,第二部分(第4、5章)介绍如何搭建基于Swift的私有化存储系统,第三部分(第6、7章)分析企业应用与存储系统的集成方案,第四部分(第8章)介绍应用集成的实例。 《私有云存储系统搭建与应用》的知识体系涵盖了Linux、对象存储、虚拟化、Java、HTTP通信、Web等技术,而这些技术所涉及的业务范围主要是两块:存储系统的运维以及存储系统与应用的集成。即本书的技术方向是企业在数据存储方面的基础设施建设,以及在此基础上实现企业应用与存储系统的集成。 《私有云存储系统搭建与应用》既适合有一定架构设计经验的架构师或项目经理(系统搭建及集成方案),也适合中高级Java程序员(API的实现及应用集成)。 书中代码可免费下载(扫描封底二维码)。
本书根据国防工业信息化建设特点,依托国防科技工业高等职业教育培训基地,从培养对实际问题的分析、理解和求解的能力出发,以完整的数据库案例分析和实现为主线,介绍了数据库系统的维护、管理和开发过程,突出高职教育“够用,实用”的特点。主要内容包括数据库安装与配置、数据库基本操作、数据库中的表、数据查询、数据库的数据完整性、视图、索引、Transact—SQL语言编程、存储过程、触发器、SQLserver数据库的安全、备份与恢复等。采用项目驱动的案例教学方法,列出了学习目标和要点,相应的知识点都有实例来引导说明,从而可有针对性地进行技能训练,强调岗位技能的训练和综合技能的培养,十分注重可操作性和可视化程度,通过操作步骤截图逐步展现数据库开发的过程,使读者建立整体概念,易于理解和掌握,并从实际操作角度出发给