9787115600820 动手学深度学习(PyTorch版) 109.80 9787115584519 动手学强化学习 89.90 9787115618207 动手学机器学习 89.80 《动手学深度学习(PyTorch版)》 本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,第一部分介绍深度学习的基础知识和预备知识,并由线性模型引出最简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用
深度学习绝非不可窥探的黑箱!深入理解其模型和算法的实际运作机制,是驾驭并优化结果的关键。你无需成为数学专家或资深数据科学家,同样能够掌握深度学习系统内部的工作原理。本书旨在通过深入浅出的方式,为你揭示这些原理,让你在理解和解释自己的工作时更加自信与从容。 《深度学习精粹与PyTorch实践》以浅显易懂的方式揭示了深度学习算法的内部运作机制,即使是机器学习初学者也能轻松理解。本书通过平实的语言解析、详尽的代码注释,以及数十个基于PyTorch框架的实战示例,逐步引导你探索深度学习的核心概念与实用工具。本书避免了复杂的数学公式堆砌,而是采用直观易懂的方式阐述每种神经网络类型的运作逻辑。更令人兴奋的是,书中提供的所有解决方案均可在现有的GPU硬件上顺畅运行! 主要内容 ● 选择正确的深度学习组件 ● 训练和评估
《动手学深度学习(PyTorch版)》本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。本书重新修订《动手学深度学习》
Python贝叶斯建模与计算 《Python贝叶斯建模与计算》旨在帮助贝叶斯初学者成为中级从业者。本书使用了PyMC3、TensorFlow Probability和Arviz等多个软件库的实践方法,重点是应用统计学的实践方法,并参考了基础数学理论。 本书首先回顾了贝叶斯推断的概念。第2章介绍了贝叶斯模型探索性分析的现代方法。基于这两个基本原理,接下来的章节介绍了各种模型,包括线性回归、样条、时间序列和贝叶斯加性回归树。其后几章讨论的主题包括:逼近贝叶斯计算,通过端到端案例研究展示如何在不同环境中应用贝叶斯建模,以及概率编程语言内部构件。最后一章深入讲述数学理论或扩展对某些主题的讨论,作为本书其余部分的参考。 《Python贝叶斯建模与计算》由PyMC3、ArviZ、Bambi和TensorFlowProbability等软件库的贡献者撰写。 Python贝叶斯深度学习 深度学习正日益深刻地渗入我们
《超简单的Excel VBA 人气讲师为你讲解实战操作》 想要自己制作Excel宏,有很多必须学习的项目。虽然新手总是抱着期待开始学习,但也有不少人因为需要学习的知识变难了、变多了而受挫。因此在本书中,尽可能压缩乐学习的项目,挑最重要的知识讲。首先以学会制作在工作中使用的简单的宏为目标。制作对工作有帮助的宏,按照操作提示感受Excel运转的成就感,然后一点点学习必要的高级进阶知识,这样才是最好的学习方法。 《超简单的Python 人气讲师为你讲解程序开发》 这是一本关于Python的入门书籍, 不会让第一次接触Python的您感到沮丧 。您可以在学习的同时,以讲座 动手研讨会的形式创建一个对话机器人 pybot 。 本书可以满足那些想知道为什么要这样做,想知道其机制并获得可以应用的基础知识的读者的各种需求。 随着您逐步学习新知识并向程序中