本书坚持“古为今用”、“洋为中用”重视数学发展规律、数学思想和方法,以“尊重史实,突出重点”的原则选取史料,精选古今中外数学产生、发展的重要事件、重要人物和重要成果,将古代、近代和现代各国或地区的数学虫作简明、概括性的宏观介绍与评述。
nbsp nbsp这本由数学家写成的小册子,充分地体现了数学文化、科学精神和学者应有的风骨。作者雷尼立意巧妙,在真实的三段古代背景里,假托苏格拉底、阿基米德和伽利略与其他人的对话,抽丝剥茧地探讨了数学是什么、数学的应用该如何展开,以及数学语言对科学的意义这三大主题。《数学对话录》语言优美、节奏和缓,用可读性很强的对话,慢慢将探讨带向深层,使读者既能体会思维提升的乐趣,又可以享受轻松适意的阅读过程。读雷尼的《数学对话录》,不需要任何专门知识。但是只有肯思考的人,才能循着他的引导,从*远的门外,拾级而登,渐入佳境,*后在科学的殿堂里找到自己能够欣赏的杰作。
大数据时代,人们在生产生活中收集了大量的高维复杂数据。在针对这些数据进行统计分析的过程中,构建一个简单高效的模型至关重要。一个简单的稀疏模型不仅具有很好的解释性,常常也具有很高的性能。本书的主要工作就是针对高维数据的稀疏统计建模研究。
首先,本书从 r期状态随机概率转换矩阵 的数据,得到了 单期状态随机概率转换矩阵 的分析解,从而解决了由于时间跨度r存在而不能使用传统模型方法的问题。其次,本书对二维随机概率转换矩阵的开方进行了详细的分析,得到了矩阵开方可能存在 *性 和 存在性 的很多细节结果。*后,通过对间接估计量和直接估计量的比较,从理论推导和数值模拟两个角度得到了与一般直觉不一致的结论。
《解析几何的技巧(第4版)》主要内容包括:距离公式、平行四边形的顶点、过已知点的平行线、过已知点的垂线、同心圆、渐近线相同的双曲线、复数与旋转、三角形的心、法线式、一次式、表示直线的高次方程、过原点的曲线等。
所谓珠心算,即珠算式心算.珠算,是以算盘为工具,用 来计算多位数的加、减、乘、除、四则计算、开方等 题型.其运珠技巧有一定的规律及口诀,当使用者能熟 练操作算盘,除了会快速的求出正确答案外,也能透过 脑细胞的滋长,将算盘的盘式,档次及珠子的浮动变化 描绘到脑子里,即好像在脑子里有把「活算盘」,这种 活算盘的影像,称为「虚盘」.它透过知觉,形象,记忆 等过程,在大脑里来完成珠算运算,即我们所谓珠算式 心算.珠算式心算,熟练后计算速度要超过电子计算器, 其速度之快非常惊人.往往只要听到题目报数,或自己 看到计算题型,算者即能将答数脱口而出,或立即写出. 所以珠算式心算是当今世界上*好的一种计算技术.
在中学物理学习过程中,学生在获取知识的同时,还要重视从科学宝库中汲取思维营养,加强科学思维方法的训练。《中学生物理思维方法丛书》就是这样一套 授之以渔 的优秀辅导书。丛书每一册都以某一类或两三类思维方法为主线,在物理学史的恢宏长卷中,撷取若干生动典型的事例,把读者引入饶有兴趣的科学氛围中,然后围绕这些思维方法,就其在中学物理教学中的功能和表现,以及其在具体问题中的应用做较为深入、全面的挖掘,使读者能从物理学史和中学物理教学现实两方面较宽广的视野中,逐步领悟到众多思维方法的真谛。 丛书信息: ● 分析与综合 ● 守恒 ● 猜想与假设 ● 图示与图像 ● 模型 ● 等效 ● 对称 ● 分割与积累 ● 归纳与演绎 ● 类比 ● 求异 ● 数学物理方法 ● 形
【 丛书简介 】 在中学物理学习过程中,学生在获取知识的同时,还要重视从科学宝库中汲取思维营养,加强科学思维方法的训练。《中学生物理思维方法丛书》就是这样一套 授之以渔 的优秀辅导书。丛书每一册都以某一类或两三类思维方法为主线,在物理学史的恢宏长卷中,撷取若干生动典型的事例,把读者引入饶有兴趣的科学氛围中,然后围绕这些思维方法,就其在中学物理教学中的功能和表现,以及其在具体问题中的应用做较为深入、全面的挖掘,使读者能从物理学史和中学物理教学现实两方面较宽广的视野中,逐步领悟到众多思维方法的真谛。 丛书信息: ● 分析与综合 ● 守恒 ● 猜想与假设 ● 图示与图像 ● 模型 ● 等效 ● 对称 ● 分割与积累 ● 归纳与演绎 ● 类比 ● 求异 ● 数学
《解析几何的技巧(第4版)》主要内容包括:距离公式、平行四边形的顶点、过已知点的平行线、过已知点的垂线、同心圆、渐近线相同的双曲线、复数与旋转、三角形的心、法线式、一次式、表示直线的高次方程、过原点的曲线等。