9787115435590 普林斯顿微积分读本(修订版) 99.00 9787115543776 普林斯顿概率论读本 139.00 9787115543844 普林斯顿数学分析读本 69.00 《普林斯顿微积分读本(修订版)》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。 《普林斯顿概率论读本》 本书讲解概率论的基础内容, 包括组合分析、概率论公理、条件概率、离散型随机变量、 连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等, 内容丰富, 通俗易懂, 并配有丰富的例子和大量习题, 涉及物理学、生物学、化学、遗传学、博弈论、经济学等多
本书主要介绍了数学分析中的内容,以构造数系和集合论开篇,逐渐深入到级数、函数等高等数学内容,举例详实,每部分内容后的习题与正文内容密切相关,有利于读者掌握所学的内容。本书在附录部分还介绍了数理逻辑基础和十进制,突出了严格性和基础性。 本书适合已经学习过微积分的本科生和研究生,以及具有数学专业知识的读者。
本书译自《燃烧理论与数值方法》英文第3版。本书从燃烧学的一些基本概念和原理入手,深入介绍了基本的燃烧理论以及如何通过数值仿真,准确、真实地实现燃烧现象。全书共10章,前3章为燃烧领域的初学者提供了良好的入门教材,第4~6章为从事湍流燃烧数值模拟的研究生和工程师提供了一个不错的参考,第8章和第10章为燃烧不稳定性领域的学者提供了一些相关知识和精彩素材,第7章的壁面与火焰相互作用和第9章的边界条件处理,为实现高保真燃烧器数值模拟提供了关键技术。全书语言流畅,图文并茂,论理清楚,实用性强,是一本燃烧学方面不可多得的经典教材。本书可作为机械工程、热能与动力工程和相近专业领域学生的教材,也可供机械、航天、航空等动力领域的研究人员参考使用。
本书系统地阐述了微积分学的基本理论。在叙述上,作者尽量作到既严谨而又通俗易懂,并指出概念之间的内在联系和直观背景。原书分两卷,第一卷为单变量情形,第二卷为多变量情形。 第二卷中译本分为两册出版。本书是第二卷第一分册,包括前三章。第?章详论多元函数及其导数,包括线性微分型及其积分,补充了数学分析中最基本的概念的严密证明;第二章在线性代数方面为现代数学分析的基础准备了充分的材料;第三章叙述多元微分学的发展及应用,包括隐函数存在定理的严密证明,多元变换与映射的基本理论,曲线、曲面的微分几何基础知识以及外微分型等基本概念。原书有练习解答,分别编入各分册。 译者(按内容顺序):邵士敏、周建堂、张锦炎(第一章)、刘婉如(第二章)、林建详、张顺燕、朱德威(第三章)、林源渠(解答)。
Poincar 奖得主 Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。 第 4 部分侧重于算子理论,尤其是 Hilbert 空间。中心主题是谱定理、迹类理论和 Fredholm 行列式,以及无界自伴算子的研究。此外还介绍了正交多项式理论和关于 Banach 代数的长章,包括交换和非交换 Gel'fand-Naimark 定理以及对一般局部紧致Abel群的Fourier分析。 本书可供专业研究人员(数学家、部分应用数学家和物理学家)、讲授研究生阶段分析课程的教师以及在工作和学习中需要任何分析学知识的研究生阅读参考。
Poincar 奖得主Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。 第3部分讨论了点态极限(通过包含遍历定理和鞅收敛来超越通常关注的Hardy-Littlewood极大函数)、调和函数和位势论、框架和小波、[Math Processing Error] 空间(包括有界均值振荡(BMO))以及后一章中的许多不等式,包括Sobolev空间、Calderon-Zygmund估计和超压缩半群,进而回到第1部分的主题。 本书可供专业研究人员(数学家、部分应用数学家和物理学家)、讲授研究生阶段分析课程的教师以及在工作和学习中需要任何分析学知识的研究生阅读参考。
《Vlasov-Boltzmann型方程的数学理论》主要研究两类带外力场的Boltzmann方程,包括Vlasov-Poisson-Boltzmann(VPB)方程和Vlasov-Maxwell-Boltzmann(VMB)方程的谱分析与整体强解的渐近行为。主要内容包括:第1章介绍**Boltzmann方程的谱分析,并且利用谱分析建立Boltzmann方程整体强解的存在性和*优衰减速度估计;第2章介绍VPB方程的谱分析、能量估计和整体强解的存在性和*优衰减率;第3章至第4章基于谱分析研究VPB方程的格林函数和整体强解的时空点态估计,以及扩散极限的收敛性和收敛速度估计;第5章介绍VMB方程的谱分析、能量估计和整体强解的存在性和*优衰减率。《Vlasov-Boltzmann型方程的数学理论》*突出的特点是建立了带外力场的Boltzmann方程的谱分析,并且把谱分析方法应用到研究带外力场的Boltzmann方程整体强解的渐近行为,包括解的*优时间衰减率、格林函数的点态估计和流体
《缩减多体系统传递矩阵法》首次全面系统地介绍了国家重大项目研究成果之一,多体系统动力学多体系统传递矩阵法的理论——缩减多体系统传递矩阵法。该方法具有无需系统总体动力学方程、系统矩阵阶次低且与系统自由度无关、计算速度快、计算稳定性高、程式化程度高的特点,发展了多体系统动力学分析方法,大幅提升了计算能力和性能,为构造多体系统动力学仿真设计大型通用软件提供了快速并稳定的计算基础;揭示了任意多体系统中任意体和铰的任意联接点的状态矢量之间严格的线性传递规律;提供了相关元件和子系统传递方程和传递矩阵的一般形式;针对囊括各种拓扑结构链式、闭环、树形和一般多体系统,提出了4条总传递方程自动推导定理,定义了3种缩减变换,建立了各种元件的缩减传递方程和缩减传递矩阵普遍递推公式,据此形成了适用于各
本书汇集了解析数论中一系列有趣的话题,是解析数论领域的入门读物,重点关注整数的剖分,即对整数的乘法结构的研究。本书涵盖了一些最重要的主题,包括算术函数的全局和局部性态、光滑数的广泛研究、Hardy-Ramanujan和Landau定理、特征和Dirichlet定理、abc猜想及其一些应用,以及筛法。本书最后还专门讲述了整数复合指数的问题。 本书每章末尾都有一系列精心挑选的问题。这些问题可以强化读者对材料的理解。作者提供了偶数号问题的解答,使得本书非常适合那些想要测试其对书中理论的理解程度的读者。
本书将概率论和统计推断融合在一起,用新的观点生动地描述了概率论在物理学、数学经济学、化学和生物学等领域中的广泛应用,特别阐述了贝叶斯理论的丰富应用,弥补了其他概率论和统计学教材的不足,全书分为两部分: 部分包括10章,讲解抽样理论、假设检验、参数估计等概率论的原理及其初级应用;第二部分包括12章,讲解概率论的 应用,如在物理测量、通信理论中的应用。本书还附有大量习题,内容全面,体例完整,本书内容不局限于某一特定领域,适合涉及数据分析的各领域工作者阅读,也可作为本科生和研究生相关课程的教材。
本书为低年级研究生提供了一个关于常微分方程和动力系统的自封式的导引。 *部分从一些显式可解方程的简单例子和对定性方法的初步了解开始;然后证明了有关初值问题的基本结果:存在性,*性,可延拓性,对初始条件的依赖性;此外,还考虑了线性方程组,包括Floquet定理和一些摄动结果;作为有些独立的主题,本部分还建立了复数域中线性方程组的Frobenius方法,研究了Sturm-Liouville边值问题(包括振动理论)。 第二部分介绍了动力系统的概念,证明了Poincar -Bendixson定理,并研究了来自经典力学、生态学和电气工程的平面系统的几个例子;此外,还讨论了吸引子、Hamilton系统、KAM定理和周期解;*后,研究了稳定性,包括连续系统和离散系统的稳定流形和Hartman-Grobman定理。 第三部分介绍了混沌,从迭代区间映射的基础知识开始,以Smale-Birkhoff定理和同宿轨道的Meln
Poincar 奖得主 Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。 第 2A 部分的主题是基础复分析。它交织了三条分别与 Cauchy、Riemann 和 Weierstrass 相关的分析线索。Cauchy 的观点侧重于单复变函数的微分和积分,核心主题是 Cauchy 积分公式和周线积分。对 Riemann 来说,复平面的几何是中心内容,核心主题是分式线性变换和共形映射。对 Weierstrass 来说,幂级数是王者,核心主题是解析函数空间、Weierstrass 乘积公式和 Hadamard 乘积公式以及椭圆函数的 Weierstrass 理论。本书还包含一些其他教材中经常缺失的主题,包括:当周线是
Poincar 奖得主 Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。 第1部分致力于实分析。从一个角度来看,它将20世纪的微积分与极限积分(测度理论)和极限微分(分布理论)结合起来。另一方面,它展示了抽象空间的胜利:拓扑空间、Banach和Hilbert空间、测度空间、Riesz空间、Polish空间、局部凸空间、Fr chet空间、Schwartz空间和 L^(p )空间。后是对大技巧的研究,包括Fourier级数和变换、对偶空间、Baire范畴、不动点定理、概率思想和Hausdorff维数。应用包括无处可微函数的构造、Brown运动、空间填充曲线、矩问题的解、Ha
这本精心编写的教材介绍了微分几何的美妙思想和结果。前半部分涵盖了曲线和曲面的几何,它们为一般理论提供了很多动力和直觉。第二部分研究一般流形的几何,特别强调联络和曲率。书中附有许多图表和示例。阅读本书之前需要先学习本科的数学分析和线性代数。新版做了很多修订,包括更多的图表和习题,并新增了很多精选习题的解答。 这个新版本是一个提升改进的版本,而上一版已经是关于微分几何和黎曼几何的优秀入门教材了。除了各种修订,作者还新增了许多问题的解答,以使本书更适合课堂使用。 Colin Adams, Williams College K hnel 的这本关于微分几何的书是对该主题的极好和有用的介绍。 关于微分几何有很多不同的观点,也有很多通往其概念的路径。本书提供了一个出色的、令人兴奋且优美的基础,可以用来探索这个深刻而基础的数学主题。 Louis
半经典分析提供了基于经典量子(粒子波)对应关系的偏微分方程技术。这些技术包括几何光学和 Wentzel-Kramers-Brillouin 近似等著名工具。本书研究的问题包括高能特征值渐近性和演化方程解的有效动力学。从数学的角度看,半经典分析是微局部分析的一个分支,广义上讲,是将调和分析和辛几何应用于线性和非线性偏微分方程的研究。本书旨在作为研究生级别的教材,向读者介绍偏微分方程中的半经典和微局部方法。它在后面的章节中增加了许多专门的高级主题,这些主题提供了与当前研究文献的联系。
约翰 梅纳德 凯恩斯,英国著名经济学家,诺贝尔经济学奖获得者。现代经济学最有影响的经济学家之一,他创立的宏观经济学与弗洛伊德所创的精神分析法和爱因斯坦发现的相对论一起,并称为二十世纪人类知识界的三大革命。凯恩斯因开创了经济学的 凯恩斯革命 而称著于世,被后人称为 宏观经济学之父 。凯恩斯的著作在经济学领域特别是宏观经济学和货币理论方面影响巨大。 本书就概率的逻辑性展开阐述,书中有很多新颖的、创造性的理论,并有针对性地提出概率的系统性理论。这部书在概率理论发展史上是浓墨重彩的一笔,但这不是关键,关键是它深刻影响了凯恩斯最后的伟大著作《就业、利息与货币通论》。
本书将概率论和统计推断融合在一起,用新的观点生动地描述了概率论在物理学、数学经济学、化学和生物学等领域中的广泛应用,特别阐述了贝叶斯理论的丰富应用,弥补了其他概率论和统计学教材的不足,全书分为两部分: 部分包括10章,讲解抽样理论、假设检验、参数估计等概率论的原理及其初级应用;第二部分包括12章,讲解概率论的 应用,如在物理测量、通信理论中的应用。本书还附有大量习题,内容全面,体例完整,本书内容不局限于某一特定领域,适合涉及数据分析的各领域工作者阅读,也可作为本科生和研究生相关课程的教材。
20世纪初,量子力学和Hilbert空间上的算子理论已密切相关。量子系统的状态对应于位形空间的特定元素,可观测量对应于空间上的特定算子。本书是对量子力学数学方法的一个简要但自封的介绍,着眼于Schr?dinger算子的应用。 *部分简要介绍无界算子的谱理论,仅讨论后面应用所需的内容。谱定理是这种方法的核心,在开篇就会介绍。第二部分从自由Schr?dinger方程开始,计算自由预解式和时间演化;位置、动量和角动量将用代数方法讨论;详尽介绍了各种数学方法,然后将其用于计算氢原子的光谱。进一步的主题包括基态的非简并性、原子光谱和散射理论。 本书是关于Hilbert空间中无界算子谱理论的一个自封的介绍,提供了完整的证明和*少的预备知识 仅要求读者有扎实的高等微积分和一学期复分析导论的知识。特别地,本书不要求读者有泛函分析和Lebesgue积分理论
贯穿本书大部分内容的二维或三维空间的非欧几何,被视为与一组简单公理相关的、实射影几何的特例,这组公理涉及点、线、面、关联、序和连续性,未涉及距离或角度的测量。综述之后,作者从Von Staudt的思想 将点视为可以相加或相乘的实体 出发,引入齐次坐标。保持关联的变换称为直射变换,它们自然地导出等距同构或 全等变换 。遵循Bertrand Russell的建议,连续性用序来描述。通过特殊化椭圆或双曲配极 将点变换为线(二维)、面(三维),反之亦然 椭圆和双曲几何可从实射影几何派生而来。 本书的一个不同寻常的特点是,它利用一般的线性坐标变换,来推导椭圆和双曲三角函数的公式。根据Gauss的巧妙想法,三角形面积与其角度之和有关。 任何熟悉代数乃至群论基础的读者都可以从本书获益。第六版澄清了第五版的一些晦涩之处,新增的15.9节包含了
几何学的故事就是数学本身的故事:欧几里得几何学是第一个被系统研究并建立在坚实逻辑基础上的数学分支,它是现代数学基础上公理化方法的原型。作为一种逻辑思维模式,它已经被教授给学生两千多年了。 本书讲述了公理化方法如何从欧几里得时代发展到现在,以帮助我们理解数学是什么,如何阅读和评估数学论证,以及为什么数学已经达到了如此高的确定性水平。它主要面向计划教授中学几何的高年级本科生,但也适合任何希望更好地了解几何和公理化方法的人。它引入了现代、严谨的欧几里得和(较少程度上的)非欧几里得几何的公理化处理,为学生提供了充足的机会来练习阅读和书写证明,同时发展了中学教师在课堂上需要了解的大部分具体的几何关系。
通俗地讲,K-理论是一种探究数学对象(如环或拓扑空间)结构的工具,它利用适当参数化的向量空间并生成重要的内在不变量,这些不变量在代数和几何问题的研究中非常有用。代数K-理论是本书的主角,主要研究环的结构。然而,事实证明,即使在纯代数语境下工作,人们也需要使用同伦理论等技术来构造高阶K-群并进行计算。由此产生的代数、几何和拓扑在K-理论中的相互作用提供了数学统一性的迷人一瞥。本书是代数K-理论的综合介绍。它将K0和K1的经典代数技术与更新的用于高等K-理论的拓扑技术(如同伦理论、谱和上同调下降)相融合。内容涵盖从基础知识到最前沿的技术,包括数域的高等K-理论的计算以及与Riemann 函数的关系。---------------------------------------------------------本书提供了大量来自经典和新近代数K-理论的材料。对于经验丰富的研究生和在职研究
本书是一部美国中学生数学竞赛的全面指南,共分四册: 第1册 基础知识及解题策略 第2册 分类基础练习及解答 第3册 竞赛真题集锦 第4册 竞赛真题集锦解答 在的第三版中,作者根据广大学子的要求,做了一些调整,增加了不少新内容: 1.增加了更多知识点,比如部分增加了四点共圆,反演,更多解析几何知识等。 2.新增了2019年AMC完整系列问题及解答,包括AMC 8/10A/10B/12A/12B以及2卷AIME。 3.版和第二版中的短文部分换成了凯恩教授的十大实用解题策略及备考建议。 4.习题的组织和分类比前两版更细致,更方便读者练习巩固。 本书所选用的真题及解答均获得相关考试机构的官方授权。