本书对非线性*化的理论、算法及相关技术作了比较系统的介绍。在内容的选取方面,尽可能避免过分复杂的理论分析,以适应不同专业、不同层次技术人员对*化技术的需求,另外,也尽可能地增加一些数值例子或经济管理方面的应用实例。全书共分9章。*章主要介绍*化的基础理论;第二章介绍无约束*化问题的*性条件以及线搜索技术;第三章主要介绍无约束*化算法,主要有*速下降法、Newton法、共轭梯度法;第四章主要讨论约束优化问题的*性条件;第五章介绍Lagrange对偶理论;第六章介绍线性规划;第七章介绍二次规划的求解算法;第八章介绍一般非线性约束*化问题的罚函数法;第九章给出两种特殊规划:几何规划和多目标规划,并给出一些应用实例。
本书通过一个个有趣的故事,讲述了数学中的许多概念与方法是怎样在生活中逐步产生和发展的,使读者能够更为亲切地接触数学发展的历史。内容包括:改变世界的数学、游戏中的数学、有用的数学。书中的每一个数学问题和故事,都来源于生活。希望读者在阅读本书之后,能够知道数学与生活的密切联系,懂得数学是人们了解世界、认识世界的强有力的工具,也能够认识到在学习数学的过程中,可以培养人的分析能力、应用能力和逻辑思维能力,这些能力对人的发展会发挥长久的作用。
复变函数与积分变换 是普通高等院校理工科专业的一门重要基础课,它是解决实际问题的重要工具,在自然科学和工程技术的许多领域有着广泛的应用。为了帮助在校大学生学好这门课程,依据*制定的高等学校《工科数学课程教学基本要求》,编写了《复变函数与积分变换练习题集》。 在编排方面,根据课程各章节教学内容的先后次序以及基本概念、基本方法、重点、难点,精选了各类练习题,包含判断题、选择题、填空题、计算题、解答题、证明题等,*后给出7套综合测试题,可以帮助学生检测对所学知识的掌握程度。《复变函数与积分变换练习题集》的习题取材适当、难易兼顾,具有较强的针对性和代表性,能帮助学生掌握基本概念及理论,开拓解题思路,提高综合分析能力,巩固学习成果。
本书为学术专著,对时间依赖变分不等式的解的存在性、*性、算法、解集的性质和时间依赖变分不等式的应用进行了研究,介绍了与变分不等式相关的基本情况、来源于粘弹性材料的准静态摩擦接触问题的广义发展变分不等式,将广义发展变分不等式从Hilbert空间扩充到了Banach空间,在一定假设条件下,利用Banach不动点定理,得到了广义发展变分不等式解的存在性和*性,给出了这个问题的两个数值逼近格式,并给出了解的存在性和误差估计。本书研究了有限维空间中的微分逆变分不等式组、有限维空间中一类微分逆混合变分不等式,在一些合适的条件下,给出了可逆混合变分不等式的解集满足线性增长的条件和可逆混合变分不等式的解集的性质,得到的结论扩展并丰富了可逆混合变分不等式和可逆变分不等式的某些已有的结果。
本书作者在泛函分析、算子代数和算子理论、特别是用C*代数解决希尔伯特空间上的算子问题的研究上很有成就。本书曾作为美国伯克利大学和丹麦奥胡斯大学的主要教材,是一本关于C*代数和C*代数在希尔伯特空间上的表示理论的导论性著作。全书简明扼要地介绍了C*代数与GCR代数之间的关系。要求读者熟悉泛函分析、测度理论和希尔伯特空间理论。可供抽象代数专业的研究生和研究人员参考。目次:①基础知识,②相重数理论,③波莱尔结构,④从交换代数到GCR代数。
内容简介: 数理逻辑是离散数学的重要组成部分之一,是计算机科学的数学基础。《数理逻辑引论(修订版)》内容主要侧重于逻辑演算,即命题逻辑演算和一阶谓词逻辑演算,这些内容是构成数理逻辑其他分支的共同基础。全书共分5章,分别介绍了数理逻辑的研究对象、研究内容和研究方法;命题逻辑的基本概念、命题逻辑演算形式系统的组成、基本定理及其性质定理;一阶谓词逻辑演算形式系统的基本概念、组成、基本定理及其性质定理、一阶语言的语义等。 《数理逻辑引论(修订版)》可用作高等院校计算机专业离散数学的教材或教学参考书,也可供从事计算机科学、人工智能方面的科技人员参考。
本书给出了几个著名悖论特别是说谎者悖论的解答。作为预备,讨论了悖论的由来和机理,特别是悖论与反证法的关系。
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,富盛名习题,莫过于前苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当长的一段时间之内,这套书只有题目,并无标准解法,直到20世纪八十年代初由我国著名数学家费定晖,周学圣等人将其全部解出,并且反复演算,终集结成册,由山东科学技术出版社出版,这就是在数学界大名鼎鼎的《1.Б.П.吉米多维奇数学分析习题集》。从《吉米多维奇数学分析习题集》到《吉米多维奇数学分析习题集题解》虽然两字之差,但是包含了一代数学大师们无数的心血。 直至1977年吉米多维奇去世,全套题集共计4462道,由浅入深的涵盖了数学分析题目的全部变化形式,部分习题难度很大,因此无论是自学、提高还是考研,这本书
数理逻辑是离散数学的重要组成部分之一,是计算机科学的数学基础。《数理逻辑引论(修订版)》内容主要侧重于逻辑演算,即命题逻辑演算和一阶谓词逻辑演算,这些内容是构成数理逻辑其他分支的共同基础。全书共分5章,分别介绍了数理逻辑的研究对象、研究内容和研究方法;命题逻辑的基本概念、命题逻辑演算形式系统的组成、基本定理及其性质定理;一阶谓词逻辑演算形式系统的基本概念、组成、基本定理及其性质定理、一阶语言的语义等。 《数理逻辑引论(修订版)》可用作高等院校计算机专业离散数学的教材或教学参考书,也可供从事计算机科学、人工智能方面的科技人员参考。
本书为《数学 第四册》(与本书同步由机械工业出版社出版)的配套用书,依据《上海市中等职业学校数学课程标准》及《中本贯通数学课程标准》编写,包括三章内容:概率与统计初步、流程框图,以及数列。本书遵循中职学生的认知规律与理解水平,适当增加高等数学学习所必需的初等数学基础知识,以使学生具备进入本科阶段学习高等数学的知识储备与能力基础。 本书注重解决数学问题中“建模、解模、释模”三个环节的能力培养,重视信息技术手段在课堂教学与问题解决中的应用,适合中本贯通学生中职阶段的学习。