陶威尔编著的《李代数和代数群》内容介绍:ThetheoryofgroupsandLiealgebrasisinterestingformanyreasons.Inthemathematicalviewpoint,itemploysatthesametimealgebra,analysisandgeometry.Ontheotherhand,itintervenesinotherareasofscience,inparticularindifferentbranchesofphysicsandchemistry.Itisanactivedomainofcurrentresearch.Oneofthedifficultiesthatgraduatestudentsormathematiciansinterestedinthetheoryeacross,isthefactthatthetheoryhasverymuchadvanced,andconsequently,theyneedtoreadavastamountofbooksandarticlesbeforetheycouldtackleinterestingproblems.
《代数学(英文版)》群论方面通过早引入群作用,利用比较少的篇幅讲了Sylow定理,幂零和可解群的知识,并证明了大于等于5元素集合上的交错群为单群。对环论方面,我们将重点放在利用模论来研究环,将和群论类似的内容放入习题中去,环论刻画了半单环,证明了有限群表示理论中的有关定理,还包括了主理想整环上有限生成模的结构定理及应用,分式模有关理论以及代数几何中的准素分解定理和Hilbert基定理。在域的Galois理论中除了传统的5次以上方程无公式解之外,还证明了代数闭域的存在定理,有限域的结构,以及Hilbert零点定理,另外我们还用一章介绍了目前研究比较多的各种代数,包括Hopf代数、李代数、Jordan代数,证明了李代数泛包络代数的PBW定理以及有限单代数的Burnside群理论。后一章介绍了范畴有关的概念,包括一些基本定理。
李继根等编的《矩阵分析与计算》是基于编著者多年从事矩阵分析类课程的教学改革实践经验,并结合学生的实际情况编写而成的,可作为高等院校理工科各专业研究生和工程硕士学习矩阵分析等相关课程的,也非常适合理工科高年级本科生学完线性代数课程后进一步学习之用。全书分为线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题七章。该既注意系统性,又注重体现工科特色,深广度适中,并适当略去了一些定理的证明。书中注重启发式教学,采用多种方式自然地引入基本概念和基本方法。同时,行文时非常注重几何直观及与类比,力争做到深入浅出、简洁易懂,以便于自学。书中还穿插了许多矩阵计算知识,并附有大量matlab代码,以渗透科学计算思维。此外,书中加入的大量数学史与数学文
本书以递归方式定义了一系列正交多项式序列,主要介绍了类切比雪夫多项式、第二类切比雪夫多项式以及切比雪夫多项式在逼近理论中的重要应用.本书适用于数学竞赛选手、教练员及广大数学爱好者研读.
戴建生所著的《旋量代数与李群李代数》全面深入地讲述了旋量代数理论及其几何基础,是一本贯通旋量代数与李群、李代数理论,深入研究其内在特性与关联结构以及旋量系理论的著作。《旋量代数与李群李代数》起始于直线几何与线性代数,紧密联系李群、李代数、Hamilton四元数、Clifford双四元数、对偶数等基本概念而自然过渡到旋量代数与有限位移旋量。作者在书中首次全面深入地阐述了旋量代数在向量空间与射影几何理论下的演变与推理,提出旋量代数与李代数、四元数代数等以及有限位移旋量与李群的关联论,展现出旋量理论与经典数学及现代数学的内在联系,并总结提炼出许多论证严密、意义明确的定理。本书以公式推导和几何演示为主体,既展现出旋量代数、李群与李代数、四元数代数及其关联论等代数理论的严谨性,又体现了射影几何、仿射几何等
戴建生所著的《旋量代数与李群李代数》全面深入地讲述了旋量代数理论及其几何基础,是一本贯通旋量代数与李群、李代数理论,深入研究其内在特性与关联结构以及旋量系理论的著作。《旋量代数与李群李代数》起始于直线几何与线性代数,紧密联系李群、李代数、Hamilton四元数、Clifford双四元数、对偶数等基本概念而自然过渡到旋量代数与有限位移旋量。作者在书中首次全面深入地阐述了旋量代数在向量空间与射影几何理论下的演变与推理,提出旋量代数与李代数、四元数代数等以及有限位移旋量与李群的关联论,展现出旋量理论与经典数学及现代数学的内在联系,并总结提炼出许多论证严密、意义明确的定理。本书以公式推导和几何演示为主体,既展现出旋量代数、李群与李代数、四元数代数及其关联论等代数理论的严谨性,又体现了射影几何、仿射几何等
本书共分为五章:行列式、矩阵、线性方程组、特征值和二次型等,并介绍了在相关学科的具体应用案例。书中内容注重培养学生的抽象思维能力以及分析问题和解决问题能力,力求通俗易懂,深入浅出;利用矩阵的初等变换给出了线性代数中的相关知识,突出了行列式、向量、矩阵及其运算、线性方程组、矩阵特征值等内容,在经济预测与决策、投入产出分析、层次分析法,以及在物理学、化学计量学、量子力学、电磁场理论等学科的具体应用案例,展现了线性代数“应用广泛性”的这一学科特性。每章节配置了适量的自测题和习题,便于测试学生的综合运用和掌握线性代数知识的能力。本书可作为高职高专、专升本等层次的“线性代数”课程的或参考。
本书是根据苏联国立技术理论出版社于i953年出版的甘特马赫尔所著的《矩阵论》来译出的,本书分上、下两册,下册为原书第二部分。包括:复对称、反对称与正交矩阵、奇异矩阵束、非负元素所构成的矩阵、特征值的正则性的各种判定与局部化、矩阵论对于线性微分方程组研究的应用、路斯一胡尔维茨问题及其相邻近的问题、特征数与奇异数的不等式等内容.本书可供高等院校本科生、研究生、数学及物理科学研究人员和王程师参考之用.
戴建生所著的《旋量代数与李群李代数》全面深入地讲述了旋量代数理论及其几何基础,是一本贯通旋量代数与李群、李代数理论,深入研究其内在特性与关联结构以及旋量系理论的著作。《旋量代数与李群李代数》起始于直线几何与线性代数,紧密联系李群、李代数、Hamilton四元数、Clifford双四元数、对偶数等基本概念而自然过渡到旋量代数与有限位移旋量。作者在书中首次全面深入地阐述了旋量代数在向量空间与射影几何理论下的演变与推理,提出旋量代数与李代数、四元数代数等以及有限位移旋量与李群的关联论,展现出旋量理论与经典数学及现代数学的内在联系,并总结提炼出许多论证严密、意义明确的定理。本书以公式推导和几何演示为主体,既展现出旋量代数、李群与李代数、四元数代数及其关联论等代数理论的严谨性,又体现了射影几何、仿射几何等
戴建生所著的《旋量代数与李群李代数》全面深入地讲述了旋量代数理论及其几何基础,是一本贯通旋量代数与李群、李代数理论,深入研究其内在特性与关联结构以及旋量系理论的著作。《旋量代数与李群李代数》起始于直线几何与线性代数,紧密联系李群、李代数、Hamilton四元数、Clifford双四元数、对偶数等基本概念而自然过渡到旋量代数与有限位移旋量。作者在书中首次全面深入地阐述了旋量代数在向量空间与射影几何理论下的演变与推理,提出旋量代数与李代数、四元数代数等以及有限位移旋量与李群的关联论,展现出旋量理论与经典数学及现代数学的内在联系,并总结提炼出许多论证严密、意义明确的定理。本书以公式推导和几何演示为主体,既展现出旋量代数、李群与李代数、四元数代数及其关联论等代数理论的严谨性,又体现了射影几何、仿射几何等
线性和非线性代数方程组求解是众多科学与工程计算领域的基础共性任务,也是整体数值模拟的关键。本书系统而深入地介绍了迭代方法、预处理技术及其并行计算。迭代法涉及分裂方法、并行多分裂方法、Krylov子空间方法、并行Krylov子空间方法、Newton法及其变形;预处理技术涉及一般代数预处理、问题相关预处理、多层和多重网格预处理以及非线性预处理;为了方便实施,介绍了方法在诸多方面的应用,并用统一框架介绍了网上可得解法器和预处理软件包。
《H-矩阵类的理论及应用》专门研究具有广泛应用背景的H-矩阵类。全书共5章,章介绍有关的预备知识;第2章至第4章详细阐述正定矩阵类、稳定矩阵类、对角占优矩阵类、M-矩阵类和H-矩阵类等的定义、结构、性质、判定方法,以及几类矩阵之间的密切联系。第5章介绍几类矩阵在数值计算、齐次Markov过程、投入产出分析等方面的应用。《H-矩阵类的理论及应用》取材丰富,反映了这些矩阵类研究的进展,可作为高等院校理工科研究生和数学专业高年级本科生的教学用书,也可作为相关专业科研和技术人员的参考用书。