本书从线性变换的角度对矩阵的诸多重要概念进行了新的梳理。具体而言,第1章给出了矩阵的由来,指出矩阵是表达自然界中线性变换的最为自然的工具;第2章讲述了线性变换在一组基下的矩阵表达,从而引出矩阵相似的概念;第3章结合数的发展从特征分析的角度给出了一个矩阵可能包含的线性变换类型;第4章着重阐述若尔当标准形理论以及其重要的物理意义;第5章从线性变换的连续性角度,讨论了矩阵的任意次幂问题;第6章从线性变换的整体缩放角度,讲述了行列式的几何意义以及相关的代数性质;第7章和第8章的研究对象从单个的矩阵转到矩阵的集合,着重讲述了矩阵李群和矩阵李代数的相关概念及含义。
全书共分两卷,涉及的面很广,可以说概括了1920?1940年代数学的主要成就,也包括了1940年以后代数学的新进展,是代数学的经典著作之一。本书是第一卷,分成11章:前5章以最小的篇幅包括了为所有其余各章作准备的知识,即有关集合、群、环、域、向量空间和多项式的最基本的概念;其余各章主要讲述交换域的理论,包括Galois理论和实域。
本书根据James R.Munkres所著“Elements of Algebraic To-pology”(Perseus出版社1993年版)译出。 全书共分8章74节,内容丰富,论述精辟,主要内容包括单纯同调群及其拓扑不变性、Eilenberg-Steenrod公理系统、奇异同调论、上同调群与上同调环、同调代数、流形上的对偶等。
本书是一本计算数学名著,作者用摄动理论和向后误差分析方法系统地论述代数特征值问题以及有关的线性代数方程组、多项式零点的各种解法,并对方法的性质作了透彻的分析。本书的内容为研究代数特征值及有关问题提供了严密的理论基础和强有力的工具,全书共分九章,第一章叙述矩阵理论,第二、三章介绍摄动理论和向后舍入误差分析方法,第四章分析线性代数方程组解法,第五章讨论Hermite矩阵的特征值问题,第六、七章研究如何把一般矩阵化为压缩型矩阵及压缩型矩阵的特征值的问题,第八章论述LR和QR算法,最后一章讨论各种迭代法。
交换代数与同调代数是代数学中的重要领域,也是代数几何、代数数论等领域的强大工具,因此是很多不同方向的研究生和研究人员所需要甚至的。本书针对各方面读者的基本需要,内容包括多重线性代数、交换代数(包括“硬交换代数”)与同调代数等方面的基本理论,在取材上只注意这些学科中重要且实用的基本内容,而不涉及很专门的课题。在内容的安排上,采取了“低起点,高坡度”的方式。在预备知识方面,只假定读者学过群论和域论(包括伽罗华理论),而从环的基本理论讲起。每一章后面都有若干习题,标有星号的习题在附录B中有解答或提示。
本书汇集了抽象代数中的大量问题和反例, 主要内容有群论、环论、域和伽罗瓦理论等. 书中通过例子对抽象代数的基本概念进行了比较仔细的对比, 考虑了很多重要定理在不同条件下是否成立的问题, 给出了抽象代数中很多值得深入思考的问题.
本书介绍算子代数与非交换Lp空间的基本内容,共分6章第1章和第2章阐述c*代数的基本理论,包括Gelfand变换、连续函数演算、Jordan分解和GNS构造等内容。第3章和第4章系统论述vonNeumann代数的基本理论,涵盖了核算子、算子代数的局部凸拓扑、Borel函数演算、vonNeumann二次交换子定理和Kaplansky稠密性定理、正规泛码等内容。第5章介绍非交换Lp空间的基本性质,包括非交换测度空间、非交换不等式、非交换Lp空间的对偶性、可测算子以及非交换测度空间的张量积等内容。第6章是若干例子,它们是前述各章内容的补充与综合应用。附录介绍Hilbert空间上紧算子的谱理论。全书内容简练、结构清晰,每个结果都给出详细的证明并且例题充分翔实。
本书运用矩阵论研究的新成果对线性代数中的行列式、矩阵论、线性方程组、多项式、二次型、线性空间和线性变换的理论及应用进行综合研究,以展示线性代数的核心思想及处理线性代数问题的简捷、有效、实用的核心技术。本书还特别研究了一般教科书中难以展开讨论的若干重要内容,精心设计和选编了难度相当或略高于硕士研究生入学考试的典型、实用而新颖的例题和习题,以此向读者展示线性代数核心思想和技术的具体应用。书末附有详细的习题答案或提示。
本书介绍了中世纪伊斯兰文明中的数学成就、著名伊斯兰数学家花拉子密及其代表作《代数学》,并将《代数学》与不同文明、不同历史时期的相关数学著作进行比较,以此来探究花拉子密的数学思想渊源及其在数学史上的重大作用。此外,为便于读者更好地全面了解《代数学》这本著作,本书最后附上了这本书的全书翻译版本。
本书系统阐述线性模型的基本坪论、方法及其应用,其中包括理论与应用的近期发展。全书共分九章,第一章通过实例引进各种线性模型,第二章讨论矩阵论方面的补充知识,第三章讨论多元正态及有关分布。从第四章起,系统讨论线性模型统计推断的基本理论与方法,包括:最小二乘估计、假设检验、置信区域、预测、线性回归模型、方差分析模型、协方差分析模型和线性混合效应模型。
本书面向数学专业核心基础课高等代数教学,全书对科学出版社出版、丘维声教授编写的《高等代数》一书作出了详细的题解和相关知识点的分析,全书补精选和补充了许多相应章节的相关探究性或知识点延伸的习题,从而增强读者对相应章节的理解。其中对某些问题的分析为读者提供了解决各种问题的方法。全书融汇了作者多年从事高等代数课程的教学感悟与经验,采用典型分类、多点强化、翻转解析、灵活点评等方法,帮助读者理解基本概念、熟悉基本理论、掌握基本方法,从而提高解题能力、培养创新思维。 本书叙述严谨、可读性强、题型丰富,可作为大学理科专业学习高等代数的辅导读物,也可作为报考研究生的复习参资料,也可供高等学校教师作为教学参考书。
本书针对大学线性代数的课程内容—行列式、矩阵、向量、线性方程组、特征值与特征向量、二次型、向量空间—精心设计了450道经典与创新题目,并给出了相应的解题思路。书中题型规划合理,覆盖题型全面,解题思路清晰, 适合想打牢线性代数基础的学生,以及研究生考试备考考生使用。
全书共分两卷,涉及的面很广,可以说概括了1920—1940年代数学的主要成就,也包括了1940年以后代数学的新进展,是代数学的经典著作之一。本书是 卷,分成11章:前5章以 小的篇幅包括了为所有其余各章作准备的知识,即有关集合、群、环、域、向量空间和多项式的 基本的概念;其余各章主要讲述交换域的理论,包括Galois理论和实域。
全书共分两卷,涉及的面很广,可以说概括了1920—1940年代数学的主要成就,也包括了1940年以后代数学的新进展,是代数学的经典著作之一。本书是 卷,分成11章:前5章以 小的篇幅包括了为所有其余各章作准备的知识,即有关集合、群、环、域、向量空间和多项式的 基本的概念;其余各章主要讲述交换域的理论,包括Galois理论和实域。
本书向读者介绍了代数学自诞生以来的发展历程,内容涵盖代数学中的重要概念,如未知量、抽象概念、方程、向量空间、域论、代数几何,等等。作者以诙谐的笔触展现了代数几千年发展史中的重大事件和核心人物,并介绍了代数的基本知识,以代数这一重要而有趣的角度呈现数学思维的戏剧性进化历程,向读者展现了一种感知世界的全新方式。作者凭借历史学家的叙事能力,带领读者踏上一段令人称叹、充满挑战的数学之旅。本书适合对代数学及其历史感兴趣的读者阅读。
线性代数是数学的一个分支,它的研究对象是向量、向量空间(或称线性空间)、线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。《线性代数》是理工类和经管类高等院校学生必修的一门重要基础理论课程。它的基本概念、理论和方法,具有较强的逻辑性、抽象性和广泛的实用性。通过该课程的学习,能使学生掌握该课程的基本理论和基本方法,且对学生其他能力的培养(如逻辑推理能力、抽象思维能力)和数学素养的提高也有着重要的作用。这些理论方法和能力为一些后续课程的学习及在各
阿廷编著的《代数》是一本代数学的经典著作,既介绍了矩阵运算、群、向量空间、线性变换、对称等较为基本的内容。又介绍了环、模、域、伽罗瓦理论等较为高深的内容,对于提高数学理解能力、增强对代数的兴趣是非常有
阿廷编著的《代数》是一本代数学的经典著作,既介绍了矩阵运算、群、向量空间、线性变换、对称等较为基本的内容。又介绍了环、模、域、伽罗瓦理论等较为高深的内容,对于提高数学理解能力、增强对代数的兴趣是非常有益处的, 本书是一本有深度、有特点的著作,适合数学工作者以及基础数学、应用数学等专业的学生阅读。
阿廷编著的《代数》是一本代数学的经典著作,既介绍了矩阵运算、群、向量空间、线性变换、对称等较为基本的内容。又介绍了环、模、域、伽罗瓦理论等较为高深的内容,对于提高数学理解能力、增强对代数的兴趣是非常有益处的, 本书是一本有深度、有特点的著作,适合数学工作者以及基础数学、应用数学等专业的学生阅读。