本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,不仅包括由于数学分析的需要而产生的线性代数的论题,还广泛选择了其他相关学科如微分方程、*化、逼近理论、工程学和运筹学等有关的论题。本书主要内容有:特征值、特征向量和相似性、酉相似、schur三角化及其推论、正规矩阵、标准形和包括jordan标准形在内的各种分解、lu分解、qr分解和酉矩阵、hermite矩阵和复对称矩阵、向量范数和矩阵范数、特征值的估计和扰动、正定矩阵、非负矩阵。 本书逻辑清晰,结构严谨,既注重教学又注重应用。在每一章的开始,作者都介绍几个应用来引入本章的论题以激发学习兴趣。在章节末尾,作者还独具匠心地编排了许多具有探索性和启发性的习题,引导读者提高描述和解决数学问题的能力。本书是一本畅销的教材,对从事线性代数纯理论研究和应用研究的人
本书从有限维空间线性算子的特征值出发, 采用类比、归纳等方式, 通过大量实例循序渐进地引入无穷维空间上线性算子的谱理论, 系统介绍并分析了有界线性算子、共轭算子、正常算子、自共轭算子、紧算子的结构, 讨论了上述这些有界线性算子的谱点分类、谱集的性质和谱分解定理. 进而对闭的线性算子、无界线性算子, 特别是在近代物理学、量子力学中有着深刻应用背景的微分算子的结构、亏指数、自共轭扩张和它们的谱分解加以分析.
无
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等.新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范数等相关的小节,扩展了与逆矩阵和矩阵块相关的内容,对基础线性代数和矩阵理论作了全面总结,有1100多个问题,并给出一些问题的提示,还有很详细的索引.本可作为工程硕士以及数学、统计、物理等专业研究生的教材,对从事线性代数纯理论研究和应用研究的人员来说,本书也是一本推荐的参考书。
本书系统和全面地介绍了组合优化的基本理论和重要算法。全书共分22章,内容既包括图论、线性和整数规划以及计算复杂性等基础部分,又涵盖了组合优化中若干重要问题的经典结果和最新进展.除了对理论的深刻讨论外,书中还提供了丰富的研究文献和具有挑战性的习题。
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等.新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范
《C语言从入门到精通(项目案例版)》一书以初学者为目标,全面介绍了C语言入门知识、C语言程序设计、C语言核心技术及C语言项目实战案例等。全书共分21章,其中1~13章详细介绍了使用C语言进行程序开发需要掌握的各种技术,具体内容包括C语言概述、Turbo C 2.0集成开发环境、算法和数据类型、顺序与选择结构程序设计、循环控制、数组、函数、指针、结构体和共用体、位运算、预处理、文件、图形图像等。14~21章通过图书管理系统、趣味俄罗斯方块、贪吃蛇大作战、网络通信聊天程序等8个具体的实战项目案例,展现了使用C语言进行项目开发的全过程。 《C语言从入门到精通(项目案例版)》配备了极为丰富的学习资源,具体内容如下: ◎配套资源:240节教学视频(可扫描观看),总时长28小时,以及全书实例源代码。 ◎附赠“Visual C 开发资源库”,拓展学
《线性发展方程的单参数半群》全面讲述了强连续线性算子的单参半群理论。《线性发展方程的单参数半群》的特点是在常微分和偏分方程算子、衰退方程和volterra方程和控制理论中广泛应用。而且,书中也强调了一些哲学动机和历史背景。《线性发展方程的单参数半群》适用于数学、控制的研究生和更高层次的科研人员。