本书是为学习数学分析课程的学生、从事数学分析教学与研究的读者而编写的。全书共分为七章,系统地把数学分析中的重要定理总结和归纳为微积分基本定理、微分中值定理、积分中值定理、积分关系定理、极限关系定理、闭区间上连续函数的性质定理、实数连续性(完备性)定理七类进行研究。 全书从定理的历史演变分析、定理的内容与证明分析、定理的几何意义与条件结论分析、定理间的相互关系分析、定理的应用分析、定理的推广分析等角度展开研究。
陈国旺编著的《索伯列夫空间导论》主要讲述索伯列夫空间一般理论和在非线性偏微分方程中的应用。内容涉及Lebesgue空间Lp(Ω)及其基本性质;整数阶索伯列夫空间Wm,p(Ω)及其性质;Wm,p(Ω)空间的嵌入定理、紧嵌入定理和插值定理以及连续函数空间的嵌入定理。论述研究非线性发展方程时,常用到的含有时间的空间和含有时间的索伯列夫空间。介绍类似于索伯列夫空间嵌人定理的离散函数的插值公式,并利用离散函数的插值公式证明广义Schrodinger型方程组初边值问题整体广义解的存在性。讲述速降函数、缓增广义函数以及它们的Fourier变换和Lebesgue空间的Fourier变换,分数阶索伯列夫空间Hs(RN)和Hs(Ω)及其性质。介绍近年来外关注的几个非线性发展方程的初边值问题和Cauchy问题解的存在性以及解的爆破现象和解的渐近性质,使读者较快地利用索伯列夫空间这个有力理论工
陈国旺编著的《索伯列夫空间导论》主要讲述索伯列夫空间一般理论和在非线性偏微分方程中的应用。内容涉及Lebesgue空间Lp(Ω)及其基本性质;整数阶索伯列夫空间Wm,p(Ω)及其性质;Wm,p(Ω)空间的嵌入定理、紧嵌入定理和插值定理以及连续函数空间的嵌入定理。论述研究非线性发展方程时,常用到的含有时间的空间和含有时间的索伯列夫空间。介绍类似于索伯列夫空间嵌人定理的离散函数的插值公式,并利用离散函数的插值公式证明广义Schrodinger型方程组初边值问题整体广义解的存在性。讲述速降函数、缓增广义函数以及它们的Fourier变换和Lebesgue空间的Fourier变换,分数阶索伯列夫空间Hs(RN)和Hs(Ω)及其性质。介绍近年来外关注的几个非线性发展方程的初边值问题和Cauchy问题解的存在性以及解的爆破现象和解的渐近性质,使读者较快地利用索伯列夫空间这个有力理论工
《非线性控制系统理论基础(第2版)》讲授非线性系统理论。非线性系统理论与线性系统理论相平行、相对应,但更具一般性。非线性系统理论所使用的主要数学工具微分几何方法已被证明是分析和设计非线性系统的卓有成效的和强有力的工具。《非线性控制系统理论基础(第2版)》便于教学使用,内容由浅人深,概念清晰,理论严谨,有重新构建的更为合理的体系结构,侧重于系统地介绍基础理论,同时也兼顾实际应用。为使读者时刻掌握学习的主动性和更便于自学使用,《非线性控制系统理论基础(第2版)》除在每章节前对内容作概括介绍外,还对每个定理、命题、例题都给出方法提示或目标指示。 《非线性控制系统理论基础(第2版)》可作为理工科院校控制科学与工程学科、电气工程学科和诸多相关学科专业博士研究生和硕士研究生的教材,也
本书是为学习数学分析课程的学生、从事数学分析教学与研究的读者而编写的。全书共分为七章,系统地把数学分析中的重要定理总结和归纳为微积分基本定理、微分中值定理、积分中值定理、积分关系定理、极限关系定理、闭区间上连续函数的性质定理、实数连续性(完备性)定理七类进行研究。 全书从定理的历史演变分析、定理的内容与证明分析、定理的几何意义与条件结论分析、定理间的相互关系分析、定理的应用分析、定理的推广分析等角度展开研究。
《微分方程数值解:有限差分理论方法与数值计算》阐述微分方程有限差分数值求解方法,首先介绍常微分方程初边值问题的求解方法,以及收敛性、相容性和稳定性分析;其次介绍偏微分方程(包括椭圆型方程、抛物型方程和双曲型方程)的有限差分求解方法和一些重要的差分格式,以及相应的理论分析;最后介绍有限差分方法在波动方程波场模拟中的应用;在附录中给出了一些常用公式。《微分方程数值解:有限差分理论方法与数值计算》结合教学和科研的特点,不但具有理论的严谨性,还有较多的例题和数值算例,以促进理解和应用。《微分方程数值解:有限差分理论方法与数值计算》可作为计算数学、应用数学、科学与工程计算等理工科相关专业的研究生和高年级学生的教材或参考书,也可供从事相关研究工作的教师和科研人员参考。
本书是为学习数学分析课程的学生、从事数学分析教学与研究的读者而编写的。全书共分为七章,系统地把数学分析中的重要定理总结和归纳为微积分基本定理、微分中值定理、积分中值定理、积分关系定理、极限关系定理、闭区间上连续函数的性质定理、实数连续性(完备性)定理七类进行研究。 全书从定理的历史演变分析、定理的内容与证明分析、定理的几何意义与条件结论分析、定理间的相互关系分析、定理的应用分析、定理的推广分析等角度展开研究。
本书以全新的视角来讲述经典的极限和微分理论,弥补了现行教材的一些不足,同时有着鲜明的特色。本书在传统的数学分析理论中植入一些近代数学的思想、方法和内容,同时参照近代数学的一些观点来统筹安排其内容,并注重激活读者的创新性思维,逐步培养他们的独立思考和学习研究的能力。
《数学分析方法选讲》共分6章。章主要阐述分析证明中的一些最常见的基本处理方法与技巧。根据教学上的考虑和作者自己的体会,把这些常用的处理方法适当命名后止式地予以提出,作者认为这样做有利于学生加深对方法本身的理解。第2章是Abel方法及应用简介。在第3章不等式与估值问题部分中,作者利用幂平均函数对各种平均值不等式统一进行了处理。考虑到交换运算次序在级数求和及积分计算中的重要性,作者在第4章对它进行了一些讨论,并给出了判断级数和积分不一致收敛的比较简单并且使用方便的方法。第5章简略地介绍了阶的估计及其在极限计算和级数与积分收敛性中的应用。第6章用较多的例题介绍极限存在性问题的证法和各种极限的求值方法。各章的内容都有较大的独立性,因此读者在阅读时可根据自己的需要加以选择。
本书是为学习数学分析课程的学生、从事数学分析教学与研究的读者而编写的。全书共分为七章,系统地把数学分析中的重要定理总结和归纳为微积分基本定理、微分中值定理、积分中值定理、积分关系定理、极限关系定理、闭区间上连续函数的性质定理、实数连续性(完备性)定理七类进行研究。 全书从定理的历史演变分析、定理的内容与证明分析、定理的几何意义与条件结论分析、定理间的相互关系分析、定理的应用分析、定理的推广分析等角度展开研究。
本书共分七章,分别介绍了加性算子,线性算子的解析表示,线性算子的拓展,线性算子序列,全线性泛函与共轭空间,泛函方程,K空间的具体表现的相关知识,书中还配有相关的例题以供读者学习理解。
《非线性控制系统理论基础(第2版)》讲授非线性系统理论。非线性系统理论与线性系统理论相平行、相对应,但更具一般性。非线性系统理论所使用的主要数学工具微分几何方法已被证明是分析和设计非线性系统的卓有成效的和强有力的工具。《非线性控制系统理论基础(第2版)》便于教学使用,内容由浅人深,概念清晰,理论严谨,有重新构建的更为合理的体系结构,侧重于系统地介绍基础理论,同时也兼顾实际应用。为使读者时刻掌握学习的主动性和更便于自学使用,《非线性控制系统理论基础(第2版)》除在每章节前对内容作概括介绍外,还对每个定理、命题、例题都给出方法提示或目标指示。 《非线性控制系统理论基础(第2版)》可作为理工科院校控制科学与工程学科、电气工程学科和诸多相关学科专业博士研究生和硕士研究生的教材,也
本书是为学习数学分析课程的学生、从事数学分析教学与研究的读者而编写的。全书共分为七章,系统地把数学分析中的重要定理总结和归纳为微积分基本定理、微分中值定理、积分中值定理、积分关系定理、极限关系定理、闭区间上连续函数的性质定理、实数连续性(完备性)定理七类进行研究。 全书从定理的历史演变分析、定理的内容与证明分析、定理的几何意义与条件结论分析、定理间的相互关系分析、定理的应用分析、定理的推广分析等角度展开研究。