本书共分五章。章论述非线性算子的一般性质,包括连续性、有界性、全连续性、可微性等,并给出了隐函数定理和反函数定理。第二章建立拓扑度理论。不仅建立了重要的有限维空间连续映像的Brouwer度和Banach空间全连续场的Leray-Schauder度,而且论述了较常用的凝聚场的拓扑度和A—proper映像的广义拓扑度。第三章将半序和拓扑度(不动点指数)相结合来研究非线性算子方程的正解,讨论了常用的凹算子和凸算子的正解及多解问题。第四章主要证明强制半连续单调映像的满射性和强制多值极大单调映像的满射性。第五章论述非线性问题中的变分方法,既包括古典的极值理论,也包括属于大范围变分学的Minimax原理和山路引理等。书中包括了对于非线性积分方程、常微分方程以及二阶半线性椭圆型偏微分方程的应用。本书可作为综合性大学和师范学院数学系研究生的教材以
本书主要对几类常用的非线性优化算法:共轭梯度法、拟牛顿法、邻近点法、信赖域方法以及求解约束优化问题的梯度投影法、有限记忆BFGS方法、Topkis-Veinott方法等逐一作了介绍,尤其着重于对这几类算法的改进和扩展应用,包含对共轭梯度法参数的讨论、修正的共轭梯度法、修正的拟牛顿公式及对应的修改的拟牛顿算法、非单调的BFGS类算法、非光滑凸优化的一类邻近点模式算法、邻近束方法、带非单调线搜索的Barzilai-Borwein梯度法、自适应三次正则化信赖域算法、结合有限记忆BFGS的有效集投影信赖域方法、初始点任意的梯度投影法、变形Topkis-Veinott方法、子空间有限记忆BFGS方法等,以及规划SQP算法和极限载荷分析模型。对应算法均给出了收敛性质的分析,部分算法给出一些算例和数值试验结果。
李殿璞编著的这本《非线性控制系统理论基础( 第2版)》讲授非线性系统理论。非线性系统理论与线性系统理论相平行、相对应,但更具一般性。非线性系统理论所使用的主要数学工具微分几何方法已被证明是分析和设计非线性系统的卓有成效的和强有力的工具。本书便于教学使用,内容由浅入深,概念清晰,理论严谨,有重新构建的更为合理的体系结构,侧重于系统地介绍基础理论,同时也兼顾实际应用。为使读者时刻掌握学习的主动性和更便于自学使用,本书除在每章节前对内容作概括介绍外,还对每个定理、命题、例题都给出方法提示或目标指示。 《非线性控制系统理论基础(第2版)》可作为理工科院校控制科学与工程学科、电气工程学科和诸多相关学科专业博士研究生和硕士研究生的教材,也可供初涉非线性理论领域的读者作为入门教材和自学教材使用,还
《拉克斯定理和阿廷定理--从一道IMO试题的解 法谈起》(作者戴执中、佩捷)是“数学中的小问题大 定理”之一,通过一道IMO试 题研究讨论拉克斯定理和阿廷定理,并着重介绍了希 尔伯特第 十七问题。 《拉克斯定理和阿廷定理--从一道IMO试题的解 法谈起》可供从事这一数学分支或相关学科的数学工 作者、大 学生以及数学爱好者研读。
本书是为学习数学分析课程的学生、从事数学分析教学与研究的读者而编写的。全书共分为七章,系统地把数学分析中的重要定理总结和归纳为微积分基本定理、微分中值定理、积分中值定理、积分关系定理、极限关系定理、闭区间上连续函数的性质定理、实数连续性(完备性)定理七类进行研究。 全书从定理的历史演变分析、定理的内容与证明分析、定理的几何意义与条件结论分析、定理间的相互关系分析、定理的应用分析、定理的推广分析等角度展开研究。