《拉克斯定理和阿廷定理--从一道IMO试题的解 法谈起》(作者戴执中、佩捷)是“数学中的小问题大 定理”之一,通过一道IMO试 题研究讨论拉克斯定理和阿廷定理,并着重介绍了希 尔伯特第 十七问题。 《拉克斯定理和阿廷定理--从一道IMO试题的解 法谈起》可供从事这一数学分支或相关学科的数学工 作者、大 学生以及数学爱好者研读。
《数值分析典型应用案例及理论分析》分为上、下两册,本书为下册。本书在上册基本理论编写基础上,就数值分析工程应用的案例进行了综合。与上册基本理论对应,本书案例分为8章,分别为递推法及其稳定性分析篇、函数计算 误差和相对误差分析篇、插值篇、拟合篇、线性方程组篇、非线性方程篇、数值积分篇、数值微分篇,内容涉及机械、液压、电力、电子、船舶、传热、力学、材料等工科学科。
《数值分析典型应用案例及理论分析》分为上、下两册,本书为上册。本书在参考同类《数值分析》教材基础上,就基本理论进行了重组和适当简化,将章节划分为数值分析与科学计算、插值与拟合、线性方程组与非线性方程(组)求解、数值积分与数值微分四个部分。全书在理论编写基础上,介绍了部分数值分析方法的MATLAB程序设计,同时引用典型案例,就如何基于基本理论建立数值模型,并利用MATLAB程序设计进行数值计算进行了讨论。
《数学分析解题精讲》是编者(徐新亚)30余年数学分析教学和考研辅导的经验总结,全书共选入600 多个例题和200多个课后习题,它们基本上都是近年来各高校数学专业招收硕士研究生时的入学试题,涵盖了数学分析考研大纲要求的所有内容,精简实用、针对性强,完全能够满足绝大多数数学专业学生的考研需要。 如何解题是《数学分析解题精讲》的主旨,但又决不是为解题而解题.对书中所列的例题,注重分析题意,寻找突破点,对许多典型题型进行解题思路分析,力图发现常见的规律,以求积累解题技巧,实现解题能力的升华。 《数学分析解题精讲》既可以作为数学专业学生进行考研辅导时的教科书,也适合学生自学。
本书是为理工科大学本科和研究生普遍开设的“数值分析”课程编写的教材。 其内容包括插值与逼近,数值微分与数值积分,线性方程与非线性方程组的数值解法,矩阵的特征值与特征向量计算,常微分方程数值解法。在此基础上对内容作了一些拓展,增加了SVD分解的应用、病态线性方程组的正则化方法、非线性方程组的拟牛顿法和Levenberg-Marquardt方法等。
《数学分析》是数学专业最基础课程, 它是学习后续课程的基础, 也是数学专业研究生入学考试的必考科目. 数学分析的内容丰富, 学生对内容的系统把握感觉困难. 为了读者复习数学分析的需要, 编著此书。本书包括极限论、一元函数微分学、一元函数积分学、级数理论、多元函数的极限与连续、多元函数微分学、含参变量积分、多元函数积分学
“数值分析”也叫“计算方法”,主要研究使用计算机解决数学问题的数值计算方法和理论。本书主要内容包括非线性方程(组)求根、解线性方程组的直接法和迭代法、曲线拟合和函数插值、数值微积分、常微分方程的数值解法、矩阵的特征值问题等。考虑到工科院校该课程教学的目的是满足工程和科研应用需要,因此本书更注重介绍工程应用的方法,弱化数学理论的推导证明,并且各章大多配有应用案例、上机实验和习题。本书提供配套电子课件,登录华信教育资源网注册后可以免费下载。 本书适合作为普通工科院校少学时本科生和研究生教材或教辅使用。
《数值分析典型应用案例及理论分析》分为上、下两册,本书为上册。本书在参考同类《数值分析》教材基础上,就基本理论进行了重组和适当简化,将章节划分为数值分析与科学计算、插值与拟合、线性方程组与非线性方程(组)求解、数值积分与数值微分四个部分。全书在理论编写基础上,介绍了部分数值分析方法的MATLAB程序设计,同时引用典型案例,就如何基于基本理论建立数值模型,并利用MATLAB程序设计进行数值计算进行了讨论。
《数学建模方法与分析(原书第4版)》系统介绍数学建模的理论及应用,作者米尔斯切特将数学建模的过程归结为五个步骤(即“五步方法”),井贯穿全书各类问题的分析和讨论中。书中阐述了如何使用数学模型来解决宴际
《数学建模方法与分析(原书第4版)》系统介绍数学建模的理论及应用,作者米尔斯切特将数学建模的过程归结为五个步骤(即“五步方法”),井贯穿全书各类问题的分析和讨论中。书中阐述了如何使用数学模型来解决宴际