本书是作者多年来在南开大学数学系讲授泛函分析课程的基础上写成的。全书共分6章:第一章,距离空间与拓扑空间;第二章,赋范线性空间;第三章,有界线性算子;第四章,Hilbert空间;第五章,拓扑线性空间;第六章,Banach代数。本书可作为泛函分析的一本入门教材。每章末附有一定量的习题。
《数学分析教程》版在南京大学数学系连续 使用了近二十 年。本书第二版我们对全书作了详细修订。全书概念 准确,论证严 谨,文字浅显易懂,便于自学。丰富多彩的例题与多 层次的习题大 大加强了传统的分析技巧的训练,同时又注意适当引 进近代分析 的概念。本书可作为综合性大学、师范院校数学系各 专业的教材, 也可作为其他对数学要求较高的专业的教材或教学参 考书,还可 作为高等学校数学教师以及其他数学工作者参考用书 以及研究生 入学考试的复习用书。 全书分上下两册出版。上册共9章,包括极限理 论、一元函数 微积分、多元函数及其微分学。下册共10章,包括级 数理论、傅里 叶级数、反常积分与含参变量积分、线积分、面积分 与重积分、囿变 函数与RS积分、场论等。本书是下册部分,名为《数 学分析教程(下)》,由宋国柱、任福
《俄罗斯数学精品译丛:数学分析》供初学数学分析用,它包括中学所讲授的数学分析各章节的全部内容,书中讲述多项式的导数、三角函数的导数、指数函数和对数函数的导数,积分定义为微分的逆运算、图形的面积及有穷和的极限,书后附有各章的练习,《俄罗斯数学精品译丛:数学分析》并不着意于讲述的严格性,而是注意给学生以计算技巧的训练。 《俄罗斯数学精品译丛:数学分析》的对象是中学教师和高年级学生、师范院校数学专业的学生,以及初学数学分析的读者。
《数学分析习题课讲义2》主要针对华东师范大学编写的《数学分析》教材第四版而编写的学习指导书,主要使用于初学者学习分析时学习指导,考研同学的复习,年轻教师教学参考。 本书作者结合十余年讲授数学分析、考研辅导和全国数学竞赛的经验,主要对书中内容的知识点简明归纳、课后习题进行了系统归类,对相当一部分题目给出了多种解法或备注、增加适量的有利于学生理解内容掌握方法的题目。对同类书中的部分题解法单一、解法不自然、解法不严格甚至有错误题目进行了详细打磨。
本书是大学生学习"数学分析"课的辅导教材,分为上、下两册,共七章.上册三章,内容包括:极限与连续,一元函数微分学,一元函数积分学;下册四章,内容包括:级数,多元函数微分学,多元函数积分学,典型综合题分析.在每一节中,设有内容提要、典型例题分析.通过精选的典型例题进行分析、讲解与评注,析疑解惑. 本书许多题的解法是吸取学生试卷中的想法演变而得的,特别是毕业于北京大学数学系的、国内外知名的当今青年数学家们在学生阶段的习题课上和各种测验中表现出来的睿智给本书增添了不可多得的精彩.本书的另外一大持色是:辅导怎样"答"题的同时,还 通过"敲条件,举反例"等方式引导学生如何"问"问题,就是如何给自己"提问题". 本书可作为综合大学、理工科大学、高等师范院校各专业大学生学习数学分桥的学习辅导书.对新担任数学分析
许绍溥编著的《数学分析教程》版在南京大学数学系连续使用了近二十年。《数学分析教程》第二版我们对全书作了详细修订。全书概念准确,论证严谨,文字浅显易懂,便于自学。丰富多彩的例题与多层次的习题大大加强了传统的分析技巧的训练,同时又注意适当引进近代分析的概念。本书可作为综合性大学、师范院校数学系各专业的教材,也可作为其他对数学要求较高的专业的教材或教学参考书,还可作为高等学校数学教师以及其他数学工作者参考用书以及研究生入学考试的复习用书。 全书分上下两册出版。上册共9章,包括极限理论、一元函数微积分、多元函数及其微分学。下册共10章,包括级数理论、傅里叶级数、反常积分与含参变量积分、线积分、面积分与重积分、囿变函数与RS积分、场论等。
《数学分析(第二版)》介绍了数学分析的基本概念、基本理论和方法, 包括一元(多元)函数极限理论、一元函数微积分学、级数理论和多元函数微积分学等. 《数学分析(第二版)》共分三册. 本册内容包括不定积分、定积分、定积分应用和反常积分、数项级数、函数项级数、幂级数与 Fourier级数. 《数学分析(第二版)》列举了大量例题来说明数学分析的定义、定理及方法, 并提供了丰富的思考题和习题, 便于教师教学与学生自学. 每章都有小结, 对该章的主要内容作了归纳和总结, 章末配有复习题, 方便学生系统复习. 《数学分析(第二版)》还配有 23个关于主要概念和重要定理讲解的小视频, 内容呈现得更加生动直观.
本书是大学生学习"数学分析"课的辅导教材,分为上、下两册,共七章.上册三章,内容包括:极限与连续,一元函数微分学,一元函数积分学;下册四章,内容包括:级数,多元函数微分学,多元函数积分学,典型综合题分析.在每一节中,设有内容提要、典型例题分析.通过精选的典型例题进行分析、讲解与评注,析疑解惑. 本书许多题的解法是吸取学生试卷中的想法演变而得的,特别是毕业于北京大学数学系的、国内外知名的当今青年数学家们在学生阶段的习题课上和各种测验中表现出来的睿智给本书增添了不可多得的精彩.本书的另外一大持色是:辅导怎样"答"题的同时,还 通过"敲条件,举反例"等方式引导学生如何"问"问题,就是如何给自己"提问题". 本书可作为综合大学、理工科大学、高等师范学校各专业大学生学习数学分桥的学习辅导书.对新担任数学分析
本书是为数学类各专业本科生泛函分析课程编写的教材, 在介绍泛函分析基本知识的同时, 重视与经典分析、线性代数等课程之间的联系, 让学生感受数学知识的产生和应用过程, 注意数学思想方法的渗透、数学思维方式的训练和知识的更新. 全书共5章, 分别介绍距离空间、赋范线性空间、内积空间、Banach空间上的有界线性算子和Hilbert空间上的有界线性算子. 每章均配有习题.
《数学分析习题课讲义3》是与华东师范大学数学系编写的教材《数学分析(第四版)》配套的学习辅导书,内容安排上与教材相一致,是在作者近二十年讲授“数学分析”课程和参与考研辅导以及全国大学生数学竞赛辅导所积累的大量教学资料的基础上多次修订而成的. 本书共分三册,按节进行编写,每节先梳理知识结构,再按照题目的类型和难度对教材中的习题进行重新编排并给予详细解答. 很多题目提供了多种解法并加以分析和备注,有利于学生理解数学知识蕴涵的数学思想,建构知识的内在联系. 本书还选取了一些教材之外的有代表性的习题,以拓宽知识面,也有利于夯实学习后续专业课的基础. 本书可供高等院校数学各专业学生学习“数学分析”课程使用,也可作为考研学生的复习资料,还可作为“数学分析”课程教师的参考书.
本书是一本非常的图论入门书,自从1972年出版版以来,深受广大读者的欢迎,不断再版,1996年已经出版了第四版。本书用浅显易懂的语言,大量的实例和练习介绍了图论的基本知识以及横贯和拟阵等一些比较艰深的组合数学知识,读来通俗易懂,引人入胜。书中包含了大量的图论应用实例,不管是对于数学专业的师生还是对于工程专业的科技工作者都有很大的吸引力。目次:引言;概念和离子;路和圈;树;平面性;图的着色;有向图;匹配,婚姻定理和Menger定理;拟阵。
本书主体内容是《数学分析》、《高等数学》有关内容和问题的自然延伸、补充、扩展和深化,具有拾遗补阙、加深提高之功效。各讲相对独立、自成体系,主要包括:实数理论;闭区间上连续函数性质的证明;求极限的几种新方法;不动点与压缩映射原理;单调函数;导函数的几个重要特性;中值定理的推广和有关问题;凸函数;积分学中的对称性;线面积分的几种计算方法;数项级数的敛散性判别法;函数项级数的一致收敛性;含参变量积分与广义积分;问题拾零等。本书题材多样、难度适中、深浅有度、深入浅出、易学易用,与《数学分析》、《高等数学》教材不即不离、若即若离。
《数学分析习题精解(多变量部分)》主要通过典型例题陈述数学分析中典型解题方法和技巧,内容主要涉及多变量微积分,《数学分析习题精解(多变量部分)》按章、节编排,每节包括内容精析、典型例题和习题三部分,书后附有习题解答与提示。