《Haskell函数式编程基础:原书第3版》是一本非常的Haskell函数式程序设计的入门书,依次介绍函数式程序设计的基本概念、编译器和解释器、函数的各种定义方式、简单程序的构造、多态和高阶函数、数组和列表的结构化数据、列表上的原始递归和推理、输入输出I/O的控制处理、类型检测方法、代数数据类型、抽象数据类型、惰性计算等内容。《Haskell函数式编程基础:原书第3版》包含大量的实例和习题,注重程序测试、程序证明和问题求解,易读易学。《Haskell函数式编程基础:原书第3版》循序渐进,从基本的函数式程序设计直至专题,让读者对Haskell的学习不断深入。
《索伯列夫乘子理论》旨在为读者全面讲述微分函数空间对中点乘子理论。这个理论是在过去的三十年中通过众多学者大量积累发展起来的,《索伯列夫乘子理论》是前人结果的延伸和扩展。这部著作综合性强,文笔流畅,结构紧凑,是泛函分析,偏微分方程和伪微分算子等相关数学专业不可多得的和参考书。读者对象:数学领域的学生,专家,学者和相关的科研工作者。
本书的内容主要包括:密度泛函理论(Densityfunctionaltheory,DFT)的基本概念,以及如何使用DFT方法对工程实际问题进行建模模拟和计算。内容包括:何谓密度泛函理论(DFT)、对于简单固体的DFT计算、DFT计算中的基本要素、固体表面的DFT计算、DFT计算振动频率、使用过渡态理论计算化学过程的速率、基于从头算动力学的平衡相图、电子结构和磁性、从头算分子动力学、在"标准"计算之外的精度和方法。
本书俄文原为俄罗斯师范学院数学系的教学参考书.本书在内容安排上与传统的教材有很大的不同.本书共分为九章,作者从复变函数论的基础讲起,由浅入深,并在后两章中分别讲述了奇点、复变函数论在代数和分析上的应用以及保角映像、复变函数论在物理问题中的应用等.
《俄罗斯数学精品译丛:复变函数引论》以莫斯科学派的逻辑方法组织复变函数内容,从基础知识到理论延拓,共分十三章,分别为:复数、复变数与复变函数、线性变换与其他的简单变换、柯西定理·柯西积分、解析函数项级数·解析函数的幂级数展开式、单值函数的孤立奇异点、残数理论、毕卡定理、无穷乘积与它对解析函数的应用、解析开拓、椭圆函数理论初步、保角映射理论的一般原则以及单叶函数的一般性质。基础知识讲解细致、全面,很好地构建了复变函数基础框架,拓展理论清晰、广泛,为复变函数的进一步学习和物理应用埋下了伏笔。
CIMPA-UNESCO-CHINA暑期学校“自守形式与L-函数”于2010年8月1日至14日在山东威海校区举办,该国际暑期学校受联合国教科文组织资助,邀请的演讲人都是本领域的专家。刘建亚主编的《自守形式与L-函数》汇集了这次暑期学校以下演讲人的讲义:J.Cogdell,G.Harcos,李小青,P.Michel,A.Reznikov,F.Shahidi以及叶扬波。《自守形式与L-函数》涵盖自守形式、L-函数、谱理论及表示理论等方面的内容,既给出了自守形式与L-函数很好的介绍,也指出了其算术应用。《自守形式与L-函数》不仅是本领域专家们有价值的参考书,也是研究生开展研究时极好的入门书。
本书以通俗的语言、简洁流畅的叙述,针对初等函数基本运算及因式分解的问题,分别归类介绍各自的解题方法与技巧,并予以适当的点评例说,以便触类旁通。这种分类介绍的解题方法,我们将其称为解题的“个类方法”。本书专门介绍初等函数基本运算及因式分解的方法,可供具有数学功底的读者作为学习此内容的指导用书。
《中学数学解题前沿方法荟要:解方程及方程组的方法》以通俗的语言、简洁流畅的叙述,针对解方程及方程组方法的问题,分别归类介绍各自的解题方法与技巧,并予以适当的点评例说,以便触类旁通.这种分类介绍的解题方法,我们将其称为解题的“个类方法”.
本书主要继承了作者本人的小册子The Zeta—function of Riemann的内容.本书内容主要包括:ζ(s)函数,狄利克雷级数与ζ(s)函数的关系,ζ(s)函数的分析特点,函数方程,近似公式,ζ(s)函数在临界带的次序.