本书全面地介绍密度泛函理论的基本内容,共分8章。第1章泛函的微积分,提供所需要的泛函的数学基础知识。第2章量子化学基础,补充在一般物理化学以上的量子化学基础知识。第3章量子力学的密度泛函理论,从霍亨堡和库恩的两个定理出发,着重讨论库恩-沈方法,并介绍交换相关能泛函模型,主要采用局部密度近似,包括普遍化梯度近似,接着进入计算。最后是应用举例。第4章统计力学基础,补充在一般物理化学以上的统计力学的基础知识。第5章统计力学的密度泛函理论,首先建立两个生成函数,巨势泛函和内在自由能泛函,并引出巨势极小原理,形成基本框架。对于自恰场理论,由于也是研究非均匀流体的重要手段,因此也做简要讨论。第6章内在自由能泛函模型,详细讨论局部密度近似,包括普遍化梯度近似。针对宏观系统的特点,还进一步介绍更符合
《Haskell函数式编程基础:原书第3版》是一本非常的Haskell函数式程序设计的入门书,依次介绍函数式程序设计的基本概念、编译器和解释器、函数的各种定义方式、简单程序的构造、多态和高阶函数、数组和列表的结构化数据、列表上的原始递归和推理、输入输出I/O的控制处理、类型检测方法、代数数据类型、抽象数据类型、惰性计算等内容。《Haskell函数式编程基础:原书第3版》包含大量的实例和习题,注重程序测试、程序证明和问题求解,易读易学。《Haskell函数式编程基础:原书第3版》循序渐进,从基本的函数式程序设计直至专题,让读者对Haskell的学习不断深入。
本书全面地介绍密度泛函理论的基本内容,共分8章。第1章泛函的微积分,提供一些数学基础知识。第2章量子化学基础。第3章量子力学的密度泛函理论,从霍恩伯格-科恩定理出发,讨论科恩-沈方法,介绍交换相关能泛函模型,主要采用局部密度近似,包括普遍化梯度近似,并给出应用举例。第4章统计力学基础。第5章统计力学的密度泛函理论,首先从巨势泛函和内在自由能泛函引出巨势极小原理,形成基本框架。自洽场理论也是研究非均匀流体的重要手段,因此也做简要讨论。第6章内在自由能泛函模型,讨论局部密度近似,包括普遍化梯度近似。还进一步介绍密度展开方法、加权密度近似和基本度量理论等,并用许多实例加以说明。第7章对高分子系统的应用,介绍密度泛函理论方程的建立和求解,还介绍动态密度泛函理论。对于自洽场理论的应用,也做简要介绍
《中学数学解题前沿方法荟要:解方程及方程组的方法》以通俗的语言、简洁流畅的叙述,针对解方程及方程组方法的问题,分别归类介绍各自的解题方法与技巧,并予以适当的点评例说,以便触类旁通.这种分类介绍的解题方法,我们将其称为解题的“个类方法”.
本书共分七章,主要介绍了zeta函数、q-zeta函数、相伴级数与积分的相关知识及内容,同时书中配有相应的例题,以供读者能够更好地理解和掌握相应的知识内容。
本书全面地介绍密度泛函理论的基本内容,共分8章。第1章泛函的微积分,提供一些数学基础知识。第2章量子化学基础。第3章量子力学的密度泛函理论,从霍恩伯格-科恩定理出发,讨论科恩-沈方法,介绍交换相关能泛函模型,主要采用局部密度近似,包括普遍化梯度近似,并给出应用举例。第4章统计力学基础。第5章统计力学的密度泛函理论,首先从巨势泛函和内在自由能泛函引出巨势极小原理,形成基本框架。自洽场理论也是研究非均匀流体的重要手段,因此也做简要讨论。第6章内在自由能泛函模型,讨论局部密度近似,包括普遍化梯度近似。还进一步介绍密度展开方法、加权密度近似和基本度量理论等,并用许多实例加以说明。第7章对高分子系统的应用,介绍密度泛函理论方程的建立和求解,还介绍动态密度泛函理论。对于自洽场理论的应用,也做简要介绍