本书通过图解的形式,在逻辑上穿针引线,讲解了大学公共课"高等数学(微积分) 中与单变量函数相关知识点,也就是经典教材《高等数学》上册中的绝大多数知识点。这些知识点是相关专业的在校、考研学生必须掌握的,也是相关从业人员深造所应的。 本书围绕着"线性相似 ,讲解了极限、导数、微分、中值定理、洛必达法则、泰勒公式、极值、最值、定积分、牛顿莱布尼茨公式、微分方程求解等知识,逻辑上层层递进,再辅以精心挑选的各种例题、生活案例等,大大降低了学习门槛。
本书是美国著名数学家Peter Lax与康奈尔大学数学教授Maria Terrell合作的多元微积分教材,作为《微积分及其应用》(中译本见本丛书第32号)的续篇,其内容涵盖了平行于一元微积分的基础部分,包括:向量和矩阵、多元函数的连续性、多元函数的微分及其应用、多元函数的积分、向量值函数在曲线与曲面上的积分,以及作为一元函数微积分基本定理的多元推广??格林定理、散度定理、斯托克斯定理.此外,作者在散度定理、斯托克斯定理这一章还补充了对守恒律的介绍,并专辟一章介绍了数学物理中典型的几类偏微分方程.跟Lax的其他教材风格一致,作者在本书中一如既往地贯彻了牛顿的主张“达到理解的绝佳方式是通过少量好的例子”.Lax对数学之应用造诣非凡,他成功地将来自物理的诸多例子融入这两本微积分教材,将数学与物理融会贯通.本书末尾提供了部分习题的答案.
本书通过图解的形式,在逻辑上穿针引线,系统地讲解了大学公共课 高等数学(微积分) 中涉及多元函数的知识点,涵盖了经典教材《高等数学》下册中的绝大部分内容。对于相关专业的在校生和考研学子而言,这些知识点是必须攻克的堡垒;对于相关领域的从业人员而言,这些内容则是深造路上不可或缺的基石。 继承 马同学图解 系列图书《微积分(上)》的独特风格,本书继续以 线性近似 为导向,深入浅出地探讨了多元函数的极限、微分、重积分及其计算方法、曲线曲面积分及其计算方法、无穷级数等内容。全书逻辑上层层递进,再辅以精心挑选的各类例题和生动有趣的生活案例,大大降低了学习门槛,让高等数学不再高不可攀。
本书是美国著名数学家彼得·拉克斯与康奈尔大学数学教授玛丽亚·特雷尔合著的单变量微积分教材,内容覆盖了一元微积分的基础,包括:数列的极限、函数的连续性、函数的微分、可微函数的基本理论、导数的应用、函数的积分、积分的方法、积分的近似计算,以及微分方程。另有两章介绍复数与概率。本书与拉克斯的另一著名教材《线性代数及其应用》简明清晰、行云流水的风格一致,通过引入许多背景自然的应用实例,两位作者致力于引导读者对微积分这一重要的基础课题获得理解。本书末尾还提供了部分习题的答案。
本书共六章。第一章讲述实域内常微分方程理论的基本知识,包含:解的存在、唯一和对初值的连续相依性定理;动力体系的概念;积分线在常点附近的局部直性等。第二章讲述庞加莱(J.H.Poincare)和本迪克森(I.O.Bendikson)所创建的积分线在平面和锚圈面上的定性理论及其近代的发展。第三章讲述 维微分方程组的解的渐近性状和李雅普诺夫(A.M.Lyapunov)式稳定性的解析判定方法。第四章讲述n维微分方程组的研究。第五章讲述由苏联学者马尔科夫(A.A.Markov)引入作为度量空间自身变换的单参数群的一般动力体系的理论。第六章讲述具有不变测度的一般动力体系的度量理论。 本书适合高等院校师生及数学爱好者研读。
本书讲述偏微分方程现代理论的最基础部分,内容共五章.其中前两章系统介绍函数空间、广义函数和Fourier分析理论的最基础部分,是学习偏微分方程现代理论必须具备的最基本的分析学知识,第3和第4两章系统讲述了二阶线性椭圆型方程和二阶线性抛物型、双曲型和Schr?dinger型三类发展型方程的最基础理论,这两章内容的学习能够基本满足希望专门研究椭圆型方程、抛物型方程或非线性发展方程以及相关学科领域读者的需要.最后一章简要介绍线性偏微分方程一般理论和拟微分算子理论.本书最突出的特点是把椭圆型方程和抛物型方程的Cμ理论与Lp理论都用Fourier分析理论做了统一的处理,并把这些理论都构建在L2理论之上,从而使得这些以前需要与偏微分方程的Fourier分析方法独立地学习的不同理论体系很自然地融合在一起.
《边界积分-微分方程方法的数学基础(英文版)》主要讨论边界积分-微分方程的数学基础理论,主要聚焦于把传统的边界积分方程中的超奇异积分转化为带弱奇性的边界积分-微分方程。《边界积分-微分方程方法的数学基础(英文版)》简要介绍了分布理论,而边界积分方程方法基于线性偏微分方程的基本解,所以对微分方程的基本解做了较为详细的介绍。在余下的章节里,依次讨论了拉普拉斯(Laplace)方程、亥姆霍兹(Helmholtz)方程、纳维(Navier)方程组、斯托克斯(Stokes)方程等的边界积分-微分方程方法和理论;还讨论了某系非线性方程,如:热辐射、变分不等式和斯捷克洛夫(Steklov)特征值问题的边界积分-微分方程理论。最后,讨论了有限元和边界元的对称耦合问题。
《微积分方法》补充了大量的数学工具,以此作为进一步研究微积分的起点,将大量的微积分概念有机地、 巧妙地结合起来处理数学命题,注重从命题本身的不同侧面发现那些处理命题的不同方法,同时注重方法的多样性和趣味性。
关于常微分方程方面的教科书有许多种,但本书却独具特物色,书中强调常微分方程的定性性质和几何性质及其它们的解,全书有272个几何插图,却没有一个复杂的数学公式。全书分为5章36节。本书是俄罗斯数学家(1937-2010),1974年菲尔兹奖得主,他的许多很好作品都被翻译为英文,本书是其中的一本,其简明的写作风格、严谨的数学基础结合物理直觉,给人一种很轻松漫谈式的教学特点,被评为很很好的常微分教材。
自动微分方法是计算函数导数的有效工具。传统观念认为,计算”元函数的一个偏导数所需要的计算量与计算该函数的一个函数值的计算量大致相当。因此,计算,z元函数的梯度(n个偏导数),所需计算量相当于函数值计算量的n倍。通常的方法,如数值微分(差商近似)和符号微分,都是如此。然而自动微分颠覆了这一传统观念。它计算函数梯度的计算量只相当于计算函数本身的数倍,而与自变量个数n无关。这一令人吃惊的结果,激发了人们对自动微分的强烈兴趣。近二十年来,自动微分已成为国际上人们关注的热点,但在的研究依然不足。据作者所知,本书是对自动微分方法及其在优化中的应用进行介绍和论述的书籍。本书由浅入深,系统地介绍自动微分的基本理论、算法设计和实现的软件工具,包括低阶和高阶微分方法。作为应用范例,本书还给出了基于自
自动微分方法是计算函数导数的有效工具。传统观念认为,计算”元函数的一个偏导数所需要的计算量与计算该函数的一个函数值的计算量大致相当。因此,计算,z元函数的梯度(n个偏导数),所需计算量相当于函数值计算量的n倍。通常的方法,如数值微分(差商近似)和符号微分,都是如此。然而自动微分颠覆了这一传统观念。它计算函数梯度的计算量只相当于计算函数本身的数倍,而与自变量个数n无关。这一令人吃惊的结果,激发了人们对自动微分的强烈兴趣。近二十年来,自动微分已成为国际上人们关注的热点,但在的研究依然不足。据作者所知,本书是对自动微分方法及其在优化中的应用进行介绍和论述的书籍。本书由浅入深,系统地介绍自动微分的基本理论、算法设计和实现的软件工具,包括低阶和高阶微分方法。作为应用范例,本书还给出了基于自
自动微分方法是计算函数导数的有效工具。传统观念认为,计算”元函数的一个偏导数所需要的计算量与计算该函数的一个函数值的计算量大致相当。因此,计算,z元函数的梯度(n个偏导数),所需计算量相当于函数值计算量的n倍。通常的方法,如数值微分(差商近似)和符号微分,都是如此。然而自动微分颠覆了这一传统观念。它计算函数梯度的计算量只相当于计算函数本身的数倍,而与自变量个数n无关。这一令人吃惊的结果,激发了人们对自动微分的强烈兴趣。近二十年来,自动微分已成为国际上人们关注的热点,但在的研究依然不足。据作者所知,本书是对自动微分方法及其在优化中的应用进行介绍和论述的书籍。本书由浅入深,系统地介绍自动微分的基本理论、算法设计和实现的软件工具,包括低阶和高阶微分方法。作为应用范例,本书还给出了基于自
In 8 years after publication of the first version of thiook,the rapidly progressing field of inverse problems witnessed changes and new developments Parts of艾赛科威专著的《偏微分方程中的逆问题(第2版)》were used at several universities.and many colleagues and students as well asmyselfobserved several misprintsandimprecisions Some ofthe research problems from the first edition have been solved This edition serves the purposes of reflecting these changes and making appropiate corrections 1 hope that these additions and corrections resulted in not too many new errors and misprints Chapters I and 2 contain only 2-3 Pages of new materiaIJike in sections 1.5. 2 5 Chapter 3 order equations and included bound……
本书这是一套3卷集经典名著,版曾影印出版,广受好评。第2版新增内容312页(3卷),这是第3卷。本卷主要论述非线性偏微分方程。其中包括经典连续统力学方程和微分几何中的方程,以及非线性扩散问题。书中论及的分析方法包括索伯列夫空间理论、hˉlder空间理论、hardy空间理论和morrey空间理论。非线性分析用的泛函空间和算子理论;非线性椭圆方程;非线性抛物方程;非线性双曲方程;不可压缩流用的欧拉方程和navier-stokes方程;爱因斯坦方程。读者对象:偏微分方程、数学物理、微分几何、调和分析和复分析等专业的研究生科研人员。读者对象:偏微分方程、数学物理、微分几何、调和分析和复分析等专业的研究生科研人员。
《变分和偏微分方法在图像分割中的应用》主要介绍了变分理论和偏微分方法在图像分割领域的应用。针对分割灰度分布不均匀图像介绍了局部驱动核的活动轮廓模型;针对分割多相复杂场景图像介绍了基于竞争区域的多分辨率多区域水平集分割方法、基于统计方法的区域合并多水平集分割方法和多层水平集分割方法。
关于常微分方程方面的教科书有许多种,但本书却独具特物色,书中强调常微分方程的定性性质和几何性质及其它们的解,全书有272个几何插图,却没有一个复杂的数学公式。全书分为5章36节。本书是俄罗斯数学家(1937-2010),1974年菲尔兹奖得主,他的许多很好作品都被翻译为英文,本书是其中的一本,其简明的写作风格、严谨的数学基础结合物理直觉,给人一种很轻松漫谈式的教学特点,被评为很很好的常微分教材。