云非圆球,山非圆锥,闪电不走直线.大自然形状的复杂性有不同的种类,不仅仅是程度上的不同.为了描写这些形状,伯努瓦?B.芒德布罗设计和发展了一种新的几何学??分形几何学.他的工作对本书论及的许多不同的领域都很重要.现在,这样的领域因许多积极的研究者而大为扩充,芒德布罗展示了分形几何学的根源及其新应用的深入概述.本书的以前几个版本受到高度评价,但这一版有更广泛和深入的覆盖范围,以及更多插图.
本书以点集拓扑核心内容为基础,从经典拓扑和内蕴拓扑的应用出发,结合理论计算机科学和信息科学等进一步阐述无点化拓扑、Domain理论、数字拓扑与数字图像信息处理、形式概念分析与广义近似空间理论(粗糙集理论)、宇宙拓扑模型等。全书共12章。第1?3章是点集拓扑的经典内容;第4章为范畴论基本概念和无点化拓扑;第5?8章是序结构理论及拓扑学在Domain理论中的应用;第9章是数字拓扑及在数字图像处理方面的应用;第10章是关于形式背景的序结构和拓扑理论;第11章是广义近似空间和抽象知识库的拓扑理论;第12章是对宇宙空间拓扑模型的探讨等。
点集拓扑、微分拓扑和代数拓扑是拓补学中三个重要的分支。代数拓扑是代数与拓扑的结合,是代数在拓扑中的应用,也是拓扑在代数中的应用。代数拓扑的特征是借助于代数的对象与方法,如群、环、同态、同构等进行研究拓扑空间在连续形变下得不变性质。代数拓扑与微分几何、微分方程、代数、泛函分析、大范围分析密切联系并有广泛应用。代数拓扑同调理论,包括复形的单纯同调群Hn(X),上同调群Hn(X),Euler示性数、上同调环,同调序列,切除定理。同调群的拓扑不变性与伦型不变性,万有系数定理和闭流形的Poincare对偶定理。在此基础上,进而引进拓扑空间的奇异链复形、奇异同调群及相应于复形的许多相关定理,并证明了多面体的单纯同调群与奇异同调群的同构性。*后,还给出了同调群论的若干应用。
代数几何是数学中*古老和发展比较快的学科之一,它与投影几何、复分析、拓扑学、数论以及数学领域的其它分支有着紧密的联系。然而近些年代数几何不论是风格还是语言都发生了巨大的变化,本书展示了相关理论的主要研究结果和计算工具的发展。本书有如下特点:(1)本书以研究具体几何问题和特殊类代数簇为中心来展开。(2)注重实例的复杂性与通常模式的对称性这两者之间的均衡,在选择的论题和叙述顺序中,书中尽量体现这种关系。(3)尤其对于涉及到的 复杂 结果,都有充分完整的证明。目次:多复变初步;复代数簇;Liemann曲面和代数曲线;深入技巧;曲面;留数;二次线丛。
本书是一本关于三维Euclid空间中光滑曲线与曲面一般几何理论的基础性专门学术著作。全书共9章,可划分为四个部分。第1章为第一部分,主要讲授三维矢量的代数与分析,是全书的理论基础。第2、3章为第二部分,属于三维Euclid空间的曲线论。第4~8章为第三部分,属于三维Euclid空间的曲面论。第9章为第四部分,深入详细地研究了包络现象。相对于既有文献,本书补充了新内容,对传统内容也往往采用新方法加以处理,对于同一问题有的还给出了不同的解法或证明,以例题的形式对工程中常见曲线、曲面的几何性质做了比较深入的定量研究讨论,还能够把其他数学分支的理论与方法自然地应用于经典微分几何的研究。本书思路清晰,推导过程详尽,论述深入浅出、直接明快,既不失作为数学著作的严谨与严格,又注意联系工程实际。
本书是一部关于流形的拓扑学专著,较全面和系统地介绍了拓扑学大多数重要领域中的理论与方法。内容涉及微分拓扑、同调论、同伦论、微分形式与谱序列、不动点理论、Morse理论,以及向量丛的示性类理论。同时,书中也介绍了作者新发展的流形共辄结构理论,主要结果包括共辄对称性定理,上、下同调群的几何化定理,小共辄元球面定理。在这些定理基础上,同调论和同伦论中许多重要定理与结果,如Poincare对偶,Lefschetz对偶,Ktinneth公式,上、下同调群,以及Hurewicz定理等的实质及直观意义变得更清楚了。
本书是我社正在开发的《美国数学会经典影印系列》中的一本,美国数学会的出版物在国际数学界享有很高声誉,出版了很多影响广泛的数学书。 十三五 期间计划引进的该学会的图书系列涵盖了代数、几何、分析、方程、拓扑、概率、动力系统等所有主要数学分支以及新近发展的数学主题。 本书源于以解析几何和代数几何为主题的PCMI暑期学校的一系列讲座。该系列讲座旨在介绍解析几何和代数几何中*进展背后所运用的高级技巧。讲座包含了许多说明性的例子、详细的计算和对所提出的主题的新观点,以便增强非专业人士对这些材料的理解。
本书主要介绍三维流形组合拓扑的基本理论和方法,内容包括正则曲面理论、连通和素分解、Heegaard分解、Haken流形、Seifert流形等传统内容,同时融入了对一些经典定理的现代处理方法,包括Heegaard分解稳定等价定理(Reidemeister-Singer定理)、Waldhausen的S3的Heegaard分解的唯一性定理、Lickorish-Wallace定理、Jaco加柄定理、Casson-Gordon的弱可约Heegaard分解与Haken流形的联系定理等,并尽量做到自相包容.为方便读者了解与三维流形组合拓扑相关的一些内容,在第2章介绍了曲面的拓扑分类,在最后几章介绍了纽结理论初步、辫子群理论初步和映射类群理论初步,供读者学习时参考.
内容简介: 本书指出二维、三维的欧氏几何都存在对偶原理,欧氏几何经过对偶所产生的新几何,实质上是对欧氏几何的一种新解释,称为 黄几何 (欧氏几何自身改陈为 红几何 ), 黄几何 经过再对偶产生的新几何称为 蓝几何 对于任何一个命题(本书所说的命题均指真命题),都可以反复使用对偶原理,产生一个又一个新的命题,形成命题链,这些新命题的正确性毋庸置疑,盖由对偶原理保证,这是射影几何所不具备的。 建立欧氏几何的对偶原理,除了需要 假元素 (指无穷远点、无穷远直线、无穷远平面)外,还要引进 标准点 ,它是度量(长度和角度)之必需,是建立对偶原理的点睛之笔,成败之举。 运用欧氏几何对偶原理解题,是一种新的解题方法,称之为 对偶法 。 本书可作为大专院校数学系师生、中学数学教师,以及数学爱好者的参考用书。可
本书主要是以度量空间为基础进行拓扑学性质的探究. 对于读者而言,以度量空间为基础可以降低拓扑学的入门难度. 与此同时本书也介绍了对于拓扑学而言相对重要的结果, 特别是其他中文书籍相对较少涉及的拓扑学维数论, 无限维拓扑学等的相关结果也在本书中有所体现. 此外, 重视拓扑学和其他学科的结合是本书的一个特点.本书从基本的集合论知识起步, 先介绍了度量空间、连续映射、度量空间的连通性和紧性,然后介绍了可分度量空间、完备度量空间、Baire空间, 还包含了这些结论在分析学中的应用、Cantor集的拓扑特征及其万有性; 进一步, 本书定义了拓扑空间,并把度量空间的拓扑学知识推广到了更一般的拓扑空间中, 并定义了仿紧性, 证明了一些可度量化定理等. 最后本书证明了Michael选择定理、Dugundji扩张定理、Brouwer不动点定理和Anderson定理.
本书第一章为条件的符号记法,一个条件是给定代数簇中子簇的某种等价类,引进了条件的乘法和加法运算,这是Schubert的独创。第二章为关联公式,由直线和其上的一点、平面和其上的一点或一直线组成的几何形体称为关联体,本章给出了关联体上各种条件之间关系的公式及其应用。第三章为叠合公式,用现代术语来说,叠合公式就是把乘积空间沿对角线爆炸所得的例外除子类用其他条件来表达,本章的公式包括点对、直线对和一些其他的叠合公式。第四章为通过退化形体进行计数,对圆锥曲线、带尖点的三次平面曲线、带二重点的三次平面曲线、三次空间曲线、二次曲面等通过退化的办法来计数,这是19世纪计数几何最具特色的方法,其内容十分丰富,结果极其深刻。第五章为多重叠合,把一对元素的叠合推广到多个元素的叠合。第六章为特征理论,给出了某些
9787115518910 基础拓扑学(修订版) 49.00 9787115538437 纯数学教程(第9版) 109.00 9787115540256 不等式 第2版 79.00 9787115547354 矩阵计算(第4版) 169.00 9787115552778 复分析:可视化方法 159.00 9787115555625 伊藤清概率论(修订版) 59.00 《基础拓扑学(修订版)》 基础拓扑学 是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。 《纯数学教程(第9版)》 本书是一部百年经典,在20世纪初奠定了数学分析课程的基础。书中对数学分析这一基础课程的重要内容 微积分学进行了系统的阐述,对很多经典的数学给出了严谨的证明方法,是Hardy数学
全书共分2章。第1章介绍复形的单纯同调群。应用“挤到边上去”的方法计算了大量典型复形的同调群,证明了单纯同调群的重分不变性、拓扑不变性和伦型不变性。应用线性代数和抽象代数知识给出了有限复形的整单纯同调群的结构定理。应用单纯同调群证明了Sn-1不是Bn的收缩核及其等价的Brouwer不动点定理,从而证明了艰难的Jordan分割定理和Jordan曲线定理,进而给出了正合单纯下同调序列和正合单纯上同调序列。 第2章介绍拓扑空间的奇异同调群。证明了奇异下(上)同调群的伦型不变性。应用图表追踪法证明了奇异下(上)同调序列的正合性,还证明了Mayer-Vietoris序列的正合性。定理2.8.1给出了奇异上同调群的万有系数定理,定理2.8.10给出了奇异下同调群的万有系数定理,这表明以任意交换群为系数群的奇异同调群 由其整奇异下同调群决定。关于多面体,2.2节证