本书是作者在复旦大学数学系主讲 空间解析几何 课程20多年的结晶,全书共3章,*章,直线与平面;第二章,曲线与二次曲面;第三章,非欧几何,包括球面三角形、射影平面几何与双曲平面几何等内容. 书中许多定理和事实是重新证明过的,有些章节完全是作者自己编写的. 每章附有一定数量的习题,其中不少习题是复旦大学数学系 空间解析几何 课程的考题. 本书可作为综合大学数学和应用数学专业 空间解析几何 课程的教材,也可作为教师教学参考用书.
《画法几何解题指导/高等院校教学辅助读物》是根据*高等学校工程制图教学指导委员会制定的《高等学校工程制图课程教学基本要求》,在参考了国内外相关院校该课程教学实践的基础上编写而成的。内容按教学顺序编排,包括:点,直线,平面,直线与平面及两平面间的相互关系,点、直线、平面的综合题,投影变换,曲线、曲面,立体的投影及其表面上的点线,平面与立体截交,直线与立体贯穿,两立体相贯,立体的表面展开,轴测投影与阴影。共十三章。每章均附有例题,以启发学生的空间思维,培养其正确的解题思路。 本书可供理工科高等院校(包括电大、职大、函大及网络学院等)与画法几何相关的学生使用,也可供中等专科学校制图教师教学时参考,还可给工程技术人员在图解空间几何时提供帮助。
《射影几何入门》以圆锥曲线的直观认识为起点,阐释了仿射变换、射影变换等射影几何的基础理论知识,论述上尽量做到既朴实直观又系统严谨,并注意数学思想和方法的渗透,是一本射影几何学的入门读物。
本习题集内容有:正投影中点,直线,平面,投影变换,点、线、面与投影变换测验作业;平面立体、曲线曲面、曲面立体,平面、直线与立体相交,两立体相交,轴测投影,平面立体、曲面立体、立体与立体相交测验作业;标高投影,阴影,透视,透视测验作业,并附有部分习题解答。 本习题集供普通高等院校中,土木工程和建筑类各专业的“画法几何及工程制图”以及“画法几何及阴影、透视”课程使用。其中,正投影和轴测投影部分也可供其他工程专业选用。该习题集是同济大学出版社同时出版的21世纪高等院校土木建筑类专业教材《画法几何》的配套书。 为了帮助广大学生学好“画法几何及工程制图”课程,同济大学出版社还出版了《画法几何解题指导》,可供学生学习、解题时参考。
《平面解析几何方法与研究(第2卷)》一书全面系统地介绍了欧氏平面解析几何的有关重要内容,是作者参考了多种有关论著并结合自己的教学经验整理而成的。《平面解析几何方法与研究(第2卷)》对进一步理解平面解析几何基本内容、拓宽知识面都有很大帮助。对于书中的难点和一般解析几何书中不常见到的内容作者都做了严谨而详细地论述,并配备了较多例题。每个例题都具有典型意义,是对正文的重要补充,这些例题对理解重要概念、掌握解析几何方法有重要作用。因此,《平面解析几何方法与研究(第2卷)》是一本有价值的数学教学参考书。
本书是解析几何的学习辅导书,分向量与坐标、平面与直线、特殊曲面、二次曲面、二次曲线共五章.每章由知识概要、典型例题分析与讲解、习题详解三个部分组成,较好地阐释了解析几何的思想和方法,对每章的重点和难点做了梳理与总结,同时通过举例分析,尝试一题多解,提高读者的解题能力,帮助读者解疑释惑,进一步理解知识点.其中习题详解部分对《几何学引论》(第2版)中的解析几何课后习题进行了全解. 本书可作为高等学校解析几何课程的教学参考用书,也可以作为学生的学习辅导用书.
《数学思想方法(第2版)》共十三章,分为三个部分。主要介绍数学思想方法的两个源头、数学思想方法的几次突破、数学的真理性以及现代数学的发展趋势.对于了解现代数学观、确立现代数学教学观颇有帮助。中篇分别对数学教学中常用的抽象与概括、猜想与反驳、演绎与化归、计算与算法、应用与建模,以及分类、数形结合、特殊化等数学思想方法进行了比较详细的介绍,旨在让学员能较好地掌握这些重要的数学思想方法。下篇主要阐述了数学思想方法与素质教育之关系、数学思想方法教学的主要阶段及其原则。
代数几何是数学中的一个重要分支,国内外很多著名的数学家都从事过对它的研究。本书从一道im0试题的解法谈起,详细介绍了代数几何中的贝祖定理。全书共分五章,分别为:一道背景深刻的im0试题、多项式的简单预备知识、代数几何中的贝祖定理的简单情形、射影空间中的交、代数几何、肖刚论代数几何。 本书可供从事这一数学分支或相关学科的数学工作者、大学生以及数学爱好者研读。
本书主要内容空间向量代数,空间直线与平面,空间常见曲面,二次曲面的一般理论,空间和平面的正交变换、仿射变换,平面射影几何简介。著名几何学家简介:笛卡尔、费马、欧几里得、罗巴切夫斯基和高斯。专题讨论:球面几何、双曲几何。
作者方运加以通俗易懂的语言阐述了坐标的概念,从一些简单的几何问题人手,讲述了利用坐标法分析问题与解决问题的基本方法,对比了坐标法、代数方法与几何方法在解题思路、方法的不同特点。在介绍一些基础性的以及若干较复杂但饶有趣味的问题在应用坐标法解题的过程中,使读者清楚地看到坐标概念是代数学与几何学结合的桥梁与一个学科分支――解析几何学――的产生和发展的必然性,并了解它成为强有力的数学工具的基本内涵。 《坐标法》是读者学习解析几何以及高等数学的一本启蒙书,它无论在学习与掌握坐标法还是在建立新的数学观念方面,以及对中学生的数学素养的提高,都会起到良好的作用。本书对大学、专科学校学生也有参考价值。
《21世纪普通高等院校土木工程和建筑类专业教材:画法几何》是普通高等院校土木工程和建筑类专业教材。主要内容有正投影图,包括点、直线、平面、直线与平面、曲线、曲面、投影变换、平面与立体相交、直线与立体相交和两立体相交;轴测投影;标高投影;阴影和透视投影等。 《21世纪普通高等院校土木工程和建筑类专业教材:画法几何》按照由浅入深、循序渐进的原则来编写,说理清楚,重点突出,图文并茂,通俗易懂。通过学习,可逐步建立和加强学生的图示、图解能力和空间思维能力。与《21世纪普通高等院校土木工程和建筑类专业教材:画法几何》配合使用的《画法几何习题集》由同济大学出版社同时出版。为了帮助广大学生学好“画法几何及工程制图”课程,同济大学出版社还出版了《画法几何解题指导》,可供学生学习、解题时参考
《平面解析几何方法与研究(第3卷)》全面系统地介绍了欧氏平面解析几何的有关重要内容,是作者参考了多种有关论著并结合自己的教学经验整理而成的,《平面解析几何方法与研究(第3卷)》对进一步理解平面解析几何基本内容、拓宽知识面都有很大帮助,对于书中的难点和一般解析几何书中不常见到的内容作者都做了严谨而详细地论述,并配备了较多例题,每个例题都具有典型意义,是对正文的重要补充,这些例题对理解重要概念、掌握解析几何方法有重要作用,因此,《平面解析几何方法与研究(第3卷)》是一本有价值的数学教学参考书。
本书与吕林根、许子道主编的《解析几何》(第四版)完全配套讲解结构四大部分: ?一、本章教材全解:先用网络结构图的形式揭示出本章各知识点之间的联系,然后用表格形式对每节涉及的基本概念、基本定理和公式进行系统的梳理,并指出在理解与应用基本概念、定理、公式时需注意的问题以及各类考试中经常考查的重要知识点; ?二、典型例题解析:这一部分是每一节讲解中的核心内容,也是全书的核心内容。作者基于多年的教学经验和研究生入学考试试题研究经验,将该节教材内容中学生需要掌握的、考研中经常考到的重点、难点、考点,归纳为一个个的在考试中可能出现的基本题型,然后针对每一个基本题型,举出大量的精选例题深入讲解,使您对每一个知识点扎实掌握,并能熟练运用在具体解题中。可谓基础知识梳理、重点考点深讲、联系考试解题三重
本书在介绍度量空间之后,引入拓扑空间,然后叙述拓扑空间的连续映射和同胚、紧致性、连通性、乘积空间和商空间;从单形入手介绍单纯复形和多面体的概念和性质,重心、重分和单纯逼近存在定理;基本群定义及其同伦等价不变性、计算方法和一些计算结果的应用;在单纯同调群之后介绍奇异同调群及其同伦等价不变性、同调群的正合序列、切除定理。第二版在*版的基础上,对部分内容作了修饰,把原来作为习题的一些延伸内容补充到正文里面,并增加了一些有针对性的习题。
《内经》是古老的、有价值的经典著作之一,是我国现存成书早的一部医学典籍,也是世界上早的一部医书。《内经》的内容非常丰富,它在生理、解剖、病理、诊断和治疗多方面都有论述,2000多年来,对中医的学术思想始终起着很大的影响。 《内经知要选讲》为*名老中医俞尚德先生根据70多年行医经验对《内经知要》进行了系统的研究,并引经据典进行诠释,从道生、阴阳、色诊、脉诊、藏象、治则、病能各篇中选择精华部分,深入浅出地对《内经》进行了讲解。
几何变化多,很有趣,也难学一些.这本书,选用概念、定义、公理、定理、证明、添线和推理方面的疑难问题,既重视讲清道理和思路,也重视指点方法和技巧,内容实用.特别是对添辅助线证题感到困难的同学,能从中得到许多帮助.
本书概要地讲述了《张量分析及在力学中的应用》的各章内容之精华,并给出了该书的全部习题全解。全书共分9章,第1、2章介绍张量的基础知识,第3~6章介绍张量代数、张量分析和黎曼空间的曲率,第7、8章介绍张量分析在弹性力学和损伤力学中的应用,第9章介绍Matlab/Mathematica在矩阵和张量演算中的应用。本书可作为大学数学、物理、力学、天文、航空、航天、土木、水利、交通、信息和管理学科的研究生和高年级大学生的参考教材,也可供相关专业的研究人员、工程技术人员和青年教师自学参考。
本书从一道国际数学奥林匹克候选题谈起,引出毕克定程.全书介绍了毕克定理、毕克定理和黄金比的无理性、精点多边形和数三章以及闵嗣鹤论、空间格点三角形的面积、从施瓦兹到毕克到阿尔弗斯及其他、美国中学课本中的有关平面格点的内容四个附录.阅读本书可全面地了解毕克定理以及毕克定理在数学中的应用. 本书适合高中生、大学生以及数学爱好者阅读和收藏。
《平面解析几何方法与研究(第1卷)》一书全面系统地介绍了欧氏平面解析几何的有关重要内容,是作者参考了多种有关论著并结合自己的教学经验整理而成的。《平面解析几何方法与研究(第1卷)》对进一步理解平面解析几何基本内容、拓宽知识面都有很大帮助,对于书中的难点和一般解析几何书中不常见到的内容作者都作了严谨而详细地论述,并配备了较多例题。每个例题都具有典型意义,是对正文的重要补充;这些例题对理解重要概念、掌握解析几何方法有重要作用。因此,《平面解析几何方法与研究(第1卷)》是一本有价值的数学教学参考书。
本书是依据作者在博士学习期间的研究成果,并结合计算机视觉领域中视频目标跟踪问题的研究现状以及信息时代对视频信息处理的具体需要编写而成的。 全书共分五章:第1章介绍了视频目标跟踪的相关基础理论知识,论述了该研究对国家和人民生活的重要意义,同时对视频目标检测、视频目标跟踪的历史与研究现状进行了回顾与分析;第2章~第4章系统地介绍了视频监控中的移动目标跟踪方法,主要包括一种基于背景动态重建的视频移动目标检测方法和另一种结合目标颜色信息拓扑关系的目标跟踪方法,并进行实时性的具体实现;第5章是总结与展望。 本书可供计算机相关领域研究者学习和参考。