全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*。省级骨干教师培训班参考用书。
《数学与人文》丛书第三十四辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本辑共分4个栏目,包含了11篇文章。 专稿 栏目收录了丘成桐先生的 几何三讲:从古代到黎曼 。 中外数学大师的经历 栏目刊载了王作跃和郭金海的文章 陈省身、华罗庚和普林斯顿高等研究院 以及另一篇纪念、回忆文章 纪念John Tate 。 国际数学家的友好交往 栏目收录了丘成桐先生纪念John Coates教授的文章以及Coates教授的生平介绍、其儿子写的悼念文章和梁志斌博士对他的采访;栏目还登载了丘成桐先生的 祝贺Karen Uhlenbeck八十华诞 , 同时收录了Uhlenbeck教授的小传;栏目的最后一篇是悼念挪威数学家Selberg的文章。 数学家趣味 栏目收录了澳门大学数学系金小庆教授的文章 书法记 。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对
代数拓扑 同伦理论描述了同伦理论。它得以兴旺发展,应归功于W. Hurewicz1935年引进同伦群以及S. Eilenberg用同伦群引进关于映射扩张的障碍类。同伦理论包括同伦群 n(X),相对同伦群、上同伦群、谱序列以及障碍理论。我们还详细讨论了第1同伦群(也称为基本群) 1(X),它在同伦群中性质知道*多,与它有关的研究成果也*多。我们将展示近代微分几何中曲率与基本群相关的一些成果。同调群与同伦群都是拓扑不变量,也都是同伦不变量。他们是比点集拓扑中得拓扑不变量(如连通性、紧致性)更难、更复杂、更高档次的不变量。我们将给出用连通性、紧致性不能判断不同胚、不同伦,而用同调群或者同伦群却能判断不同胚、不同伦的种种具体实例。*后,还给出了球面 Sn的弱冠同伦群的结果。
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
本书为 六宫变型数独 系列的*本,系统地介绍了六宫对角线的解法。在六宫对角线的解法中,*次以出版的形式,清晰定义了共同影响的解题思路。本书选择常见的题型,通过典型的例题,详细讲解每一步的思考方法,手把手教读者如何一步步分析解决各类题目。《BR》 本书150道练习题,按照由浅入深、由易至难的顺序编写。有些题目难度甚至比一般的比赛题目更难一些。无论这些题目难易程度如何,都是可以用逻辑推导出来的。
本书分为三角函数测角法,三角函数表,三角形的解法以及习题四部分。详细地介绍了平面三角的相关知识。本书适合平面几何爱好者及在中学师生阅读参考。
本书共分十三章,重点讲解投影的基本知识、点线面的投影、立体的投影、轴测投影、组合形体、标高投影、立体表面展开等内容。通过实例,图文结合、循序渐进地介绍了画法几何学的基本知识、读图思路。可作为土木工程、道桥工程、城市地下空间工程、安全、力学、测绘、环境工程、暖通、给排水、建筑学、园林、规划、环境设计、工程管理、造价、土地、房地产、城市、物业、机械、交通、物流、电气、自动化、智能、通信、信息等专业本科、专科学生的教学用书,也可供相关工程技术人员参考。 与本书配套使用的《画法几何学习题及解答》(周佳新主编)由化学工业出版社同时出版。 教材和习题及解答均有配套的PPT版课件。
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
本书讨论的是平面上的一类基本的几何变换一一保距变换. 本书通过对“什么是几何学”这个问题的讨论,自然地引出了保距变换的概念. 然后给出了平移、旋转、反射和滑动反射等保距变换的定义和性质,复合和分解的规律,以及它们的相互关系. 后对保距变换作了分类. 书中配有许多有难度但却饶有趣味的习题,认真做这些题,有助于加深对正文的理解,并增添学习的兴趣.书后附有详细的题解. 本书可作为中学数学教师的参考资料,也可作为爱好数学的中学生、大学低年级学生的课外读物。
《介绍丛书:分形学》2000年首次出版,曾被翻译成多国语言出版发行,丛书的全球销量已达到24亿,本书在我国首次翻译出版。 浮云、繁星、麦田怪圈和奔流是怎么国事?这些大自然中的奥秘如何解答? 分形学无处不在,它的研究被应用于环保、信号处理、艺术创作甚至宇宙探索当中;它是数学、艺术、哲学甚至宗教的交集。 在技术的发展过程中,许多传统的科学难题,由于分形的引入而取得显著进展。本书是轻松有趣的分形学入门读物。分形学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。本书正是向大众介绍这一奇异学科的敲门砖和引路人。本书的插画诙谐生动,语言通俗易懂,翻译精准到位,是带你入门的*选择,本书出自分形极客之手,深受国外读者青睐
平面的仿射变换和射影变换是平面的几何变换中两类很重要的变换,全等和相似变换是它们的特例,《俄罗斯数学精品译丛:几何变换(3)》专门讨论这两类变换和它们的基本性质,并着重阐述了这些变换与初等几何,特别是与几何作图问题的密切联系.在引论中介绍了变换群的概念,终回答了《俄罗斯数学精品译丛:几何变换(3)》第1、Ⅱ册中提出的什么是几何的问题.附录对在数学史上占有重要地位的一种非欧几何——双曲几何作了粗浅的介绍,书中的一百多个问题是对正文的有益且有趣的补充,它们的详细解答构成本书的后半部分。 《俄罗斯数学精品译丛:几何变换(3)》写得简明扼要,通俗易懂,引人人胜,是中学生、大学低年级学生以及他们的教师和几何爱好者的一本很好的参考书。
《几何变换(2)》主要讨论的是几何中的相似变换,内容大致可分为两部分:在前一部分中,作者首先讨论中心相似、螺旋相似和膨胀反射等变换,并仔细分析了它们的特征性质,在此基础上,给出了相似变换的完全分类;后一部分着重介绍保距变换和相似变换的许多有趣的应用。 《几何变换(2)》内容丰富,重点突出,讲述富于启发性,在每个新概念引进或在主要定理的证明之后,都配有一定数量的习题,书后附有全部习题的详细解答。 《几何变换(2)》可供中学生、大学低年级学生、中学教师以及广大数学爱好者阅读参考。
用闵可夫斯基时空几何图为工具,论述了狭义相对论的原理、运动学效应和时空观。作为一个独立的研究成果,给出了直接用“光格面积”度量基本几何元素——直线或曲线的方法,在欧氏纸面上严格地构造出二维闵氏时空平面。介绍了双曲函数和虚角三角函数在闵氏几何下的应用,通过单位双曲线的弧长定义了旋转变换的旋转角,并在闵氏几何时空背景下,对一些涉及加速的问题作了详细讨论。 《闵氏几何与狭义相对论》视角独特,方法新颖,可作为相对论教学的参考读物。由于涉及的数学很浅显。黄献民编著的《闵氏几何与狭义相对论》也可作为物理爱好者学习狭义相对论的普及读物。
黄家礼编著的《几何明珠(第3版)》以著名的平面几何定理为素材,系统地介绍了这些定理的历史渊源及各种巧妙简捷的证明与解法,得出许多美妙有趣的引申和推广,并挖掘出这些定理在解题中的一些典型新颖的应用。全书内容丰富、通俗易懂、深入浅出、妙趣横生,对激发兴趣,锻炼机敏的思维能力将大有裨益。《几何明珠(第3版)》可作为大、中学生的课外读物,也可作为中学数学教师的教学参考资料。该书版于1997年由科学普及出版社出版,并获2001年湖北省优秀论著一等奖;第二版于2000年由台湾九章出版社出版。
《线性代数与几何(第2版)》的核心内容包括 矩阵理论以及线性空间理论,分上、下两册出版,对 应于两个学期的教学内容,本书是其中的上册。俞正 光、鲁自群、林润亮编著的这本《线性代数与几何( 第2版上)》系统地介绍线性代数与空间解析几何的 基本理论和方法,具体包括行列式、矩阵、几何空间 中的向量、向量空间Fn、线性空间、线性变换、二次 型与二次曲面共7章内容。本书将空间解析几何与线 性代数密切地联系在一起,层次清晰,论证严谨,例 题典型丰富,习题精练适中。 本书可作为高等院校理、工、经管等专业的教材 及教学参考书,也可供自学读者及有关科技人员参考 。
本书是为综合大学、高等师范院校数学专业研究生基础课编写的教材,主要讲述拟共形映射与TeichmiXller空间的基础知识、基本理论及其近代重要进展。 全书共分十一章,内容包括:拟共形映射的定义与性质,拟共形映射的存在定理,偏差定理,拟圆周,拟共形映射与单叶函数,Riemann曲面上的拟共形映射,闭Riemann曲面上的极值问题,Riemann曲面的模问题与Teichmaller空间,有限型Riemann曲面上的Teichmiiller空间,Bers有界嵌入定理与Teichmaller空间的复结构,开Riemann曲面上的Teichmiiller理论。 本书在取材上,更关注Teichmiiller理论的基本理论与基本问题的讨论,而不试图涵盖当代全部进展,也不追求问题的 一般性 。本书注意了材料的自足性与内容上的循序渐进,证明严谨,叙述详实,便于读者自学。 本书可作为高等院校数学专业复分析、几何拓扑、几何分析,
《全国优秀数学教师专著系列·数学解题与研究丛书:立体几何与组合》注重科学性、系统性和趣味性,全书共含34篇小文章,每篇文章各自独立成文,所以《全国优秀数学教师专著系列·数学解题与研究丛书:立体几何与组合》可系统性地研读,也可有选择性地阅读。《全国优秀数学教师专著系列·数学解题与研究丛书:立体几何与组合》可作为高三复习备考用书,也可供中学、大学师生及初等数学爱好者研读,或作为高中数学竞赛辅导资料和师范大学数学教材教法方面的教材。
作者方运加以通俗易懂的语言阐述了坐标的概念,从一些简单的几何问题人手,讲述了利用坐标法分析问题与解决问题的基本方法,对比了坐标法、代数方法与几何方法在解题思路、方法的不同特点。在介绍一些基础性的以及若干较复杂但饶有趣味的问题在应用坐标法解题的过程中,使读者清楚地看到坐标概念是代数学与几何学结合的桥梁与一个学科分支——解析几何学——的产生和发展的必然性,并了解它成为强有力的数学工具的基本内涵。 《坐标法》是读者学习解析几何以及高等数学的一本启蒙书,它无论在学习与掌握坐标法还是在建立新的数学观念方面,以及对中学生的数学素养的提高,都会起到良好的作用。 本书对大学、专科学校学生也有参考价值。
内容简介: 《解析几何研究》采用度量几何结构和代数方法,重点研究了圆锥曲线和二次曲面,贯串了笛卡儿的两个基本观点,突出了变换与不变量的解题思路。为将解析几何理论应用于实践列举了许多实例,还为平稳过渡到学习高等代数和高等数学打好基础。 《解析几何研究》适合大学师范院校学生、中学数学教师作为教材及自学进修使用。