数学是理解和探索世界的工具,无论是学生、工程师还是科学家,*有能力也应该学会数学建模的方法和思想,学会如何用正确的思维方式搭建解答问题的阶梯。这本书旨在将数学作为一门语言、一种方法来*读者学习数学。读者也将看到如何理解、传承并调用现代科学的知识、传统和范式。数学建模不仅是数学学习和研究的过程,更是我们认识世界、理解生活的方法之一,而在实践数学建模的过程中,我们将深刻感受到数学的趣味性、严谨性和解决问题的无穷威力,正如亨利?庞加莱的名言所讲,这将是一次面向心智的雅致统一的追求。
《数学分析考研讲义(普通本科考研适用)》由宋燕、王大可、刘铁成编,为数学分析课程学习及考研辅导书。按数学分析的结构,将其内容整合为四个部分,即数学分析引论、微分学、积分学、无穷级数与反常积分。每一部分又包括基础题自测、考研要点、典型例题及分析、习题4项内容,书后配有习题答案及提示。 《数学分析考研讲义(普通本科考研适用)》适合于理工科院校或师范院校数学系学生复习备考,也适合于讲授本课程的教师参考。
潘鑫编著的《考研数学三部曲之大话高等数学》 以“盖楼”为大的背景。读者每阅读完一章,就是盖 完了大楼的一层。而每层中又分为“砖”和 “房间”两部分,先运来“砖”再搭建“房间”。这 种安排内容的方式使得全书充满了趣味性。本书的特 色除了趣味性之外,还有三个“非常”。语言非常通 俗易懂,逻辑非常清晰,例题非常丰富。本书的这四 个特色使得本书区别于市场上的同类图书。 本书的主要内容包括:数列的极限的定义,函数 的极限的定义,数列的极限的基本计算方法,函数的 极限的基本计算方法,函数的连续性,等价无穷小, 保号性及其推论,可导的定义,可导的等价定义,常 用的导数公式,求曲线的渐近线,分段函数求导,求 函数的高阶导数,求函数在某区问的最值,求两条曲 线的交点个数,求一个方程的实根个数,证明恒等式 ,
《数学分析考研讲义(普通本科考研适用)》由宋燕、王大可、刘铁成编,为数学分析课程学习及考研辅导书。按数学分析的结构,将其内容整合为四个部分,即数学分析引论、微分学、积分学、无穷级数与反常积分。每一部分又包括基础题自测、考研要点、典型例题及分析、习题4项内容,书后配有习题答案及提示。 《数学分析考研讲义(普通本科考研适用)》适合于理工科院校或师范院校数学系学生复习备考,也适合于讲授本课程的教师参考。
几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神. 本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“新课标”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值. 本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
李正元、李永乐、刘西垣主编的《数学全真模拟经典400题(数学2)》是依据考研数学大纲为2014年考研读者全新优化设计的一本全真模拟训练套题,本书中的试题难度略高于2013年考研试题,解答题(包括证明题)体现了考试重点、难点内容,综合性比较强;选择题与填空题着重考查考生对基本概念、基本公式、基本定理的理解和运用,适用于第三阶段复习训练之用。本书中的每道题均有较透彻的分析、详细解答、归纳总结的评注,因此希望考生在做题时,如果遇到了困难,不要急于看分析与解答,要多思考,只有这样才能达到本书编写的目的,才能提高应试水平,才能取得好成绩。
《量子计算公开课:从德谟克利特、计算复杂性到自由意志》由量子计算和理论计算机领域巨擘、2021年度ACM计算奖得主斯科特?阿伦森的课堂讲义整理而成。作者将量子计算置于数学、计算科学、哲学等更广阔的领域当中,谈及计算理论、集合论、图灵机、NP问题、随机性、数学逻辑、量子计算、隐变量理论、人择原理、自由意志、时间旅行和复杂性等多个话题。作者的思考深刻、发人深省,探讨了量子计算对解决相关领域难题的重大意义,并试图回答两个问题:宇宙和物理世界是如何运作的?它们为什么这样运作? 《量子计算公开课:从德谟克利特、计算复杂性到自由意志》适合爱好科普的普通大众读者,尤其适合对物理学、计算机科学、数学、哲学等内容感兴趣的读者,计算理论、计算机科学、物理学和量子物理学的从业者或专业人士也可将本书作为参考读物
《概率论与数理统计》是研究生入学考试数学试卷中的重要学科,这门课的特点是深入浅出,向我们介绍了概率统计的观点、方法、模型,给我们提供了丰富的、自由发挥想象的空间。但本课程的应用性非常突出,即紧密的围绕着独立性与不相关性的判别方法,以及基于此条件推广出的大数定律、中心极限定理、点估计、假设检验等重要而实用的话题。因此围绕深入浅出的主题,特编写此书以帮助同学们快速、高效、精准的复习这门课程.此门课程是研究生入学考试三门数学课中相对较简单的一门,不需要耗费过多的精力。只要读者们按照理解应用、剖析真题、归纳总结、灵活变通四个要求来进行复习,我相信可以在较短的时间内完全掌握此门课程,并且获取高分甚至满分。希望读者朋友们举重若轻、坚定信念,通读这必修的8课,概率统计的满分指日可待。
本书基于麻省理工学院开设的概率论入门课程编写,内容*,例题和习题丰富,结构层 次性强,能够满足不同读者的需求。书中介绍了概率模型、离散随机变量和连续随机变量、多元随机变量以及极限理论等概率论基础知识,还介绍了矩母函数、条件概率的现代定义、独立随机变量的和、*小二乘估计等*内容。
本书利用数学建模方法讨论了人类社会和自然界中的33个话题,既包括对经典话题的全新阐释,也包含对若干全新话题的原创研磨,不仅解答了大众对于数学的最常见疑问: 数学有什么用? 更是以高中知识为主要工具、以数学建模为主要载体、以中学生能够理解的方式,展现了数学研究的基本过程和思维方式。33个话题充分体现了数学与生活的密切联系,讲解了数学建模如何有效地解决跨学科问题,如何为生活中的现实需求建立合理有效的模型,如何在设计制造、生物医学、机器学习,甚至在解决社会问题方面大显身手。作者力求将抽象且严密的数学阐述得通透而有趣,凸显数学的 形式之美 逻辑之妙 与 大道至简 。本书是为高中生、大学低年级本科生和爱好数学的大众读者开启的一场妙趣横生的数学思维之旅。
本书是作者在为数学专业本科生讲授高等代数过程中形成的习题课讲义,是本科生深入学习高等代数的重要学习资料,同时也为考研学生提高了高质量的自学资料。本书共分为9章,包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、λ-矩阵的标准形、欧几里得空间。各章均分为三部分,部分提供了系统、全面的知识点,帮助学生掌握高等代数的重要思想与方法;第二部分通过大量例题帮助学生开阔视野,拓宽解题思维;第三部分给出了大量习题并配有详细答案,对前两部分进行了有力补充。
本书是威廉·费勒的著作《概率论及其应用(卷1)》的续篇。第1、2、3、6章介绍了各种重要的分布和随机过程;第7、8、16、17章讨论大数定律、中心极限定理和无穷可分分布;第9、10章讨论半群方法与无穷可分分布、马尔可夫过程的关系;第11章为更新理论;第12、18章论述随机游动及傅立叶方法的应用;第13、14章论述拉普拉斯变换及其应用;第19章为调和分析。
本书是一部百年经典,在20世纪初奠定了数学分析课程的基础。书中对数学分析这一基础课程的重要内容 微积分学进行了系统的阐述,对很多经典的数学给出了严谨的证明方法,是Hardy数学思想智慧的结晶。另外,书中收集了许多极富思考价值的练习题,值得一提的是,还收集了当年英国剑桥大学荣誉学位考试所采用的试题。
紧跟大纲,精讲考研数学线性代数部分的知识,同时配备数量的基础题及难度相当的精选例题让学生进行学习和练习。
本书为日本数学家、“日本现代数学之父”高木贞治创作的分析学入门名著。作为衔接古典与现代的集大成之作,它被誉为日本现代数学发展的“不动之根基”,也成为日本所有微积分教材、专著的参考原点。本书从严密的实数理论出发,以初等函数理论为重点,用直观、易读的讲义式叙述方式,追溯了微分、积分概念的起源与数学分析理论发展的历史轨迹,将数学分析的发展脉络与整体结构清晰地呈现在读者眼前。日本岩波书店的“定本”版本,在第3版修订版的基础上,还收录了关于“Takagi函数”的解读文章。 本书适合相关专业的本科生、研究生和教师阅读学习,也适合作为数学、物理等领域的研究者的参考资料。