《这才是好读的数学史》介绍了数学从有记载的源头向*初的算术再向代数、几何(平面几何、立体几何、解析几何)、统计学、运筹学等领域不断深化发展的历史进程。按历史发展的顺序先后介绍了古希腊、古印度、古巴比伦、古代中国、中世纪欧洲和15至16世纪数学在顺应社会实践需要的基础上出现的深化、突破。在介绍数学历史的基础上,主要对30种有关基础数学的普通概念进行了独立精彩的叙述,再现了毕达哥拉斯、欧几里德、欧拉等数学大师的风采,还特地穿插了女性数学家在数学发展中做出的巨大贡献,从各方面为读者还原了真实、有趣的数学历史。
用一晚上的时间了解科学的基础逻辑,奠定科学素养 从微小的原子核到广袤的宇宙,从相对论到DNA,从无穷级数的比较到多维空间特征,这本书无所不包。 先漫谈一些基本的数学知识,然后用一些有趣的比喻,阐述了爱因斯坦的相对论和四维时空结构,并讨论了人类在认识微观世界(如基本粒子、基因)和宏观世界(如太阳系、星系等)方面的成就。全书图文并茂,幽默生动,深入浅出,是值得一读的入门级科普经典。
个完整的科学的宇宙论和科学理论体系, 奠定科学素养 《自然哲学之数学原理》是人类掌握的个完整的科学的宇宙论和科学理论体系,其影响遍布了经典自然科学的所有领域。牛顿总结了近代天体力学和地面力学的成就,为经典力学规定了一套基本概念,提出了力学的三大定律和万有引力定律。全书分为四个部分,首先对书中的定义和运动定律做了说明,从物体的各种运动形式和在阻滞介质中摆体的运动,到宇宙星体的运动详细论述。这本书意味着经典力学的成熟,其中所建立的经典力学的理论体系成为近代科学的标准尺度。
本书分四章循序渐进地介绍了印度数学在加减乘除运算中的妙用,尤其是乘除运算,更是印度数学大显神威的舞台。*章是入门篇,介绍加减运算中从左向右的逆向速算法;第二章和第三章属进阶篇,介绍印度数学的核心思想之一 补数思想,以及数种针对特殊算式的特别方法;第四章介绍了三种游戏式的简算法,带学习者认识印度数学轻松有趣的一面:这一章用格子算法、三角魔方等顿悟式的简算方法,告诉学习者数学并不单单是枯燥烦琐的逻辑运算,也可以是手脑并用的数字游戏或趣味十足的脑筋急转弯。 本书所传达给读者的并不仅仅是破解数学运算的公式原理,更是印度数学不走寻常路的创造性思维。它将为你点亮智慧的双眼,激发兴趣与热情,去发现学习乃至生活中的崭新天地。