编程的核心是算法,学习算法不仅能教会你解决问题的方法,而且还能为你今后的发展提供一种可能。《你也能看得懂的Python算法书》面向算法初学者,首先介绍当下流程的编程语言Python,详细讲解Python语言中的变量和循序、分支、循环结构,以及列表和函数的使用,为之后学习算法打好基础。然后以通俗易懂的语言讲解双指针、哈希、深度、广度、回溯、贪心、动态规划和很短路径等经典算法。《你也能看得懂的Python算法书》适合有编程基础的算法爱好者阅读。
了解数据结构与算法是透彻理解计算机科学的前提。随着Python日益广泛的应用,Python程序员需要实现与传统的面向对象编程语言相似的数据结构与算法。本书是用Python描述数据结构与算法的开山之作,汇聚了作者多年的实战经验,向读者透彻讲解在Python环境下,如何通过一系列存储机制高效地实现各类算法。通过本书,读者将深刻理解Python数据结构、递归、搜索、排序、树与图的应用,等等。
本书主要讲述了有关设计的技巧、对象、工具等专业性知识。全书采用了简单的语言描述,借助丰富的示例与插图将设计的步骤和技巧、分析目标对象等一系列的专业知识轻松地展现了出来。本书利用图形对比的形式,直观地将好的设计的优势和特征展现在了读者面前,通过阅读本书读者将会轻松地学习到设计领域的相关知识。
《Python统计分析基础及实践》以Pytho3为基础,详细介绍了Python在统计分析中的基础知识和实践应用,全书大致 由数据整理、概率和统计推断三部分组成。其中在章对统计分析对象——数据的基本用语和数据的分类进行了介绍。 第2~3章介绍了汇总平均值和数据方差的计算方法,进而介绍了数据可视化的方法。第4~9章介绍概率相关知识,概率是 统计分析中不可缺少的数学知识。0~12章介绍主要的统计分析方法,如参数估计、假设检验、回归分析等。其中每章 都用一个例子贯穿始终,提出问题并用Python编程实现,以点带面,可帮助读者快速理解知识点,并通过编程让读者对统 计分析建立直观的理解。 《Python统计分析基础及实践》知识点全面,内容安排由浅入深、循序渐进,特别适合大中专院校金融、财务、统计、 计算机、人工智能、机器学习相关专业学生学习,也适
本书从基础的知识开始,讲解Web开发的整个流程,展示如何使用Python做测试驱动开发。本书由三个部分组成。靠前部分介绍了测试驱动开发和Django的基础知识,并在每个阶段进行严格的单元测试。第二部分讨论了Web开发要素,探讨了Web开发过程中不可避免的问题,以及如何通过测试解决这些问题。第三部分探讨了一些话题,如模拟技术、集成第三方认证系统、Ajax、测试固件以及持续集成等。第2版全部使用Python3,并针对新版Django全面升级,介绍了由外而内的测试驱动开发流程。本书适合Web开发人员阅读。
编程的核心是算法,学习算法不仅能教会你解决问题的方法,而且还能为你今后的发展提供一种可能。《你也能看得懂的Python算法书》面向算法初学者,首先介绍当下流程的编程语言Python,详细讲解Python语言中的变量和循序、分支、循环结构,以及列表和函数的使用,为之后学习算法打好基础。然后以通俗易懂的语言讲解双指针、哈希、深度、广度、回溯、贪心、动态规划和很短路径等经典算法。《你也能看得懂的Python算法书》适合有编程基础的算法爱好者阅读。
《跟老齐学Python》系列后续。读者在本书中可以学习到Numpy、Pandas、matplotlib、SciPy、SymPy等与数据分析相关的库,掌握其所定义的数据对象以及常用的属性和方法等,并通过各种类型的应用举例将所学基本知识给予综合应用。
《跟老齐学Python》系列后续。读者在本书中可以学习到Numpy、Pandas、matplotlib、SciPy、SymPy等与数据分析相关的库,掌握其所定义的数据对象以及常用的属性和方法等,并通过各种类型的应用举例将所学基本知识给予综合应用。
本书采用大量图片,通过详细的分步讲解,以直观、易懂的方式展现了7个数据结构和26个基础算法的基本原理。章介绍了链表、数组、栈等7个数据结构;从第2章到第7章,分别介绍了和排序、查找、图论、安全、聚类等相关的26个基础算法,内容涉及冒泡排序、二分查找、广度搜索、哈希函数、迪菲-赫尔曼密钥交换、k-means算法等。 本书没有枯燥的理论和复杂的公式,而是通过大量的步骤图帮助读者加深对数据结构原理和算法执行过程的理解,便于学习和记忆。将本书作为算法入门的步,是很好不错的选择。
本书结合了机器学习、数据分析和Python语言,通过案例以通俗易懂的方式讲解了如何将算法应用到实际任务。 全书共20章,大致分为4个部分。部分介绍了Python的工具包,包括科学计算库Numpy、数据分析库Pandas、可视化库Matplotlib;第2部分讲解了机器学习中的经典算法,例如回归算法、决策树、集成算法、支持向量机、聚类算法等;第3部分介绍了深度学习中的常用算法,包括神经网络、卷积神经网络、递归神经网络;第4部分是项目实战,基于真实数据集,将算法模型应用到实际业务中。 本书适合对人工智能、机器学习、数据分析等方向感兴趣的初学者和爱好者。
编程是一项充满乐趣的挑战,想上手非常容易!在本书中,沃伦和卡特父子以亲切的笔调、通俗的语言,透彻、全面地介绍了计算机编程世界。他们以简单易学的Python语言为例,通过可爱的漫画、有趣的示例,生动地介绍了变量、循环、输入和输出、数据结构以及图形用户界面等基本的编程概念。与第2版不同,第3版的示例使用Python3而不是Python2,另外添加了关于网络的新内容。只要懂得计算机的基本操作,任何人都可以跟随本书,由简入难,学会编写Python程序,甚至制作游戏。
仅仅会Python编程是不够的。想成为一名很好的数据分析工程师,还需要有多方面、透彻理解问题本质的能力,善于把实际的工作任务拆解成准确的数据问题,并运用相关的知识来解决。本书恰好是从这个角度出发的,它条分缕析地帮助你认识任务的本质,教你从数据的角度来思考、拆解任务,并很终顺利地达成目标。
《Python数据分析从入门到精通(第2版)》从数据分析初学者角度出发,以通俗易懂的语言、丰富多彩的实例,详细介绍了使用Python进行数据分析程序开发应掌握的各方面技术。全书共分21章,包括数据分析基础、搭建数据分析开发环境、NumPy模块之数组计算、Pandas模块基础、Pandas模块之数据的读取、Pandas模块之数据的处理、Pandas模块之数据的清洗、数据的计算与格式化、数据统计及透视表、处理日期与时间、Scikit-Learn机器学习模块、Matplotlib模块入门、Matplotlib模块进阶、Seaborn图表、Plotly图表、Bokeh图表、Pyecharts图表等内容,以及4个项目实战综合案例。书中所有知识结合具体实例进行介绍,涉及的程序代码给出了详细的注释,读者可轻松领会Python数据分析程序开发的精髓,从而快速提升数据分析开发技能。
本书是一本关于Python的编程入门书。全书共分为五大部分:学习准备、基础知识、知识、编程进阶和应用开发。全书在系统阐述与计算机原理相关的一些知识和Python的开发环境的基础上,重点讲解Python语法相关知识,包括变量、数据类型、逻辑语句、函数、算法等;解析Python实用用法,如面向对象、继承与多态、容器化、上下文管理等。同时,本书还结合实例分析了利用Python如何实现并发编程、数据库编程、网络编程、GUI编程,以及Python在Web后端开发、爬虫开发、大数据开发与人工智能开发中的应用。 本书结构完整,内容丰富,语言通俗易懂,实例详尽,初学者可以零基础入门,程序开发人员可以学习提高,提升编程思维。相信本书能够帮助不同层次的读者掌握Python编程,提升编程能力。