本书是享誉全球的Python入门书,影响了超过250万读者。全书分两部分:部分介绍用Python编程所必须了解的基本概念,包括强大的Python库和工具,以及列表、字典、if语句、类、文件和异常、代码测试等内容;第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的2D游戏、利用数据生成交互式的信息图以及创建和定制简单的Web应用,并帮助读者解决常见编程问题和困惑。第3版进行了全面修订:使用了文本编辑器VS Code,新增了介绍removeprefix()方法和removesuffix()方法的内容,并且在项目中利用了Matplotlib和Plotly的特性,等等。
本书是Python数学分析经典畅销书的升级版,由Python pandas项目的创始人Wes McKinney撰写。自2012年第1版出版以来,迅速成为该领域的权威指南,并且为了与时俱进,作者也在对本书内容进行持续更新,以摒弃一些过时、不兼容的工具,添加新的内容,用以介绍一些新特性、新工具及方法。本书第3版针对Python 3.10和pandas 1.4进行了更新,并通过实操讲解和实际案例向读者展示了如何高效解决一系列数据分析问题。读者将在阅读过程中学习新版本的pandas、NumPy、IPython和Jupyter。
《Python青少年趣味编程108例(全视频微课版)》以Python 3.10版本为基础,通过108个案例,详细、全面地介绍Python的基础知识和使用方法,通过制作多种有趣味的编程作品,让读者在思考中充分发挥想象力和创造力。本书共分为9章,第1章概述Python下载、安装的方法和编程环境的应用;第2章介绍Python的基础知识;第3章讲解以条件进行判断的选择结构;第4章探究重复执行的循环结构;第5章讲述字符串的应用方法;第6章介绍列表、元组与字典的作用与方法;第7章分析函数进阶应用的方法;第8章阐述turtle画图应用模块的相关知识;第9章探究运用Python编程语言综合解决实际问题的方法。 《Python青少年趣味编程108例(全视频微课版)》可作为中小学生的编程启蒙读物,也可供对Python编程感兴趣的读者学习参考,还可作为学校编程兴趣班及相关培训机构的教材。
金融量化分析不仅需要掌握金融领域的知识,还需要掌握相关的计算机编程技术。《Python金融量化分析》全面、系统地介绍金融量化分析所需要掌握的技能。无论是具有丰富的编程经验的读者,还是普通的投资爱好者,均可参照本书内容开发自己的量化交易策略回测代码,实现金融量化分析辅助投资的目的。 《Python金融量化分析》共9章,涵盖的主要内容有金融量化交易策略分析概述,Python的基础语法,Pandas模块基础,NumPy基础,数据获取与清洗,金融量化交易策略实战,TA-Lib、Empyrical与Mplfinance模块的使用方法,金融数据回归分析,ARIMA与VAR模型在金融量化领域的应用,开源金融量化交易策略回测框架Backtrader的使用方法等。掌握这些内容,可以解决金融量化分析涉及的编程语言基础、数据获取、量化交易策略构建、统计学与金融学理论在金融量化领域的高级应用,
本书主要以国内A股市场为例,借助第三方量化交易平台,讲述了KNN、线性模型、决策树、支持向量机、朴素贝叶斯等常见机器学习算法在交易策略中的应用,同时展示了如何对策略进行回测,以便让读者能够有效评估自己的策略。 另外,本书还讲解了自然语言处理(NLP)技术在量化交易领域的发展趋势,并使用时下热门的深度学习技术,向读者介绍了多层感知机、卷积神经网络,以及长短期记忆网络在量化交易方面的前瞻性应用。 本书没有从Python基础语法讲起,对于传统交易策略也只是一带而过,直接将读者带入机器学习的世界。本书适合对Python语言有一定了解且对量化交易感兴趣的读者阅读。
《Python数据可视化:科技图表绘制》结合编者多年的数据分析与科研绘图经验,详细讲解Python语言及包括Matplotlib在内的多种可视化包在数据分析与科研图表制作中的使用方法与技巧。《Python数据可视化:科技图表绘制》分为两部分,共11章,第1部分主要讲解Python语言的基础知识,包括基本语法结构、控制语句、函数、数据处理与清洗等,尤其对Matplotlib、Seaborn、Plotnie库进行较为详细的讲解。第2部分结合Python及其附加包的数据可视化功能,分别讲解类别比较数据、数值关系数据、层次关系数据、局部整体型数据、分布式数据、时间序列数据、多维数据、网络关系数据的可视化实现方法。《Python数据可视化:科技图表绘制》可帮助读者尽快掌握利用Python及可视化库进行科技图表的制作与数据展示。 《Python数据可视化:科技图表绘制》注重基础,内容翔实,突出示例讲解,
本书就Python基础知识和交易策略的基本原理为切入点,由浅入深介绍了如何从零基础使用vn.py搭建自己交易系统。本书从原理着手到代码实践,内容由最基本的Python基础知识与Python中金融分析的常用包,逐步由浅入深介绍常用的指标并将使用vn.py进行实现。 本书共分为8章,第1章与第2章介绍vn.py的环境搭建与Python常用的工具包,为后面使用vn.py实现交易策略做准备;第3章与第4章介绍vn.py框架和量化交易的基础知识;第5章到第7章从易到难介绍不同的交易策略并配合大量的实例讲解,进一步巩固vn.py代码的使用,第8章讲解如何在实盘中运行交易策略。 本书面向零基础的新手和有一定计算机与金融知识基础的读者,以通俗易懂的语言和示例阐述量化交易的实现原理,适于对于量化交易有兴趣的读者。带有详细注释的代码将帮助读者进一步理解vn.py的框架和交易策略。
本书提倡理解为主,应用为王。因此,只要有可能,小甲鱼(注:作者)都会通过生动的实例来让大家理解概念。 虽然这是一本入门书籍,但本书的 野心 并不止于 初级水平 的教学。本书前半部分首先讲解基础的Python 3语法知识,包括列表、元组、字符串、字典以及各种语句;之后循序渐进地介绍一些相对高级的主题,包括抽象、异常、魔法方法以及属性迭代器。后半部分则围绕着Python 3在爬虫、界面开发和游戏开发上的应用,通过实例引导读者进行深入学习和探究,既富有乐趣,又锻炼了读者的动手能力。 本书适合学习Python 3的入门读者,也适合对编程一无所知,但渴望用编程改变世界的朋友们。
本书是Python领域备受推崇的经典作品,致力于帮助Python开发人员挖掘这门语言及相关程序库的优秀特性,写出简洁、流畅、易读、易维护,并且地道的Python代码。本书着重讲解Python语言所独有的功能,助你成功进阶为Python高手。第2版与时俱进,教你跳出旧有经验,探索并运用地道的Python 3功能。第2版主体内容分为五部分:数据结构、函数即对象、类和协议、控制流、元编程。每一部分都精彩纷呈,通过丰富的示例和细致的讲解,教你充分利用Python特性,写出有效且现代的Python 3代码。
《Python信号处理仿真与应用(新形态版)》介绍了Python信号处理工具箱的体系架构及其函数和实例。本书共8章,主要包括信号处理概况,Python编程基础,信号生成和预处理,测量和特征提取,变换、相关性和建模,数字和模拟滤波器,频谱分析,借助大语言模型实现信号处理等内容。为了便于读者学习使用和参考,书中提供了较完整的原理方法介绍和计算推导实例。 《Python信号处理仿真与应用(新形态版)》内容全面,实用性强,适用范围广,既可作为高等院校通信与信息系统、电子科学与技术、电子信息工程等相关专业本科生和研究生的课程教材,也可作为通信、雷达信号处理、生物医学信号处理等相关领域的工程技术人员的参考资料。
《Python金融大数据分析 第2版》分为5部分,共21章。第1部分介绍了Python在金融学中的应用,其内容涵盖了Python用于金融行业的原因、Python的基础架构和工具,以及Python在计量金融学中的一些具体入门实例;第2部分介绍了Python的基础知识以及Python中非常有名的库NumPy和pandas工具集,还介绍了面向对象编程;第3部分介绍金融数据科学的相关基本技术和方法,包括数据可视化、输入/输出操作和数学中与金融相关的知识等;第4部分介绍Python在算法交易上的应用,重点介绍常见算法,包括机器学习、深度神经网络等人工智能相关算法;第5部分讲解基于蒙特卡洛模拟开发期权及衍生品定价的应用,其内容涵盖了估值框架的介绍、金融模型的模拟、衍生品的估值、投资组合的估值等知识。 《Python金融大数据分析 第2版》本书适合对使用Python进行大数据分析、处理感兴趣的金融
本书是蓝桥杯大赛软件类入门教程,详细讲解了蓝桥杯大赛软件类入门阶段的核心知识点,也是大赛必考和常考的知识点,包括数据结构、基本算法、搜索、数学、动态规划、图论等。 本书用大量的大赛真题作为例题,帮助读者巩固知识点的应用; 代码简洁精要,可作为比赛模板; 文字简洁明快,实现了较好的易读性。 本书适合正在学编程语言或刚学过编程语言,算法和数据结构零基础的算法竞赛初学者,帮助读者学习的知识点、建立计算思维、提高建模能力和编码能力; 本书也可用于其他算法竞赛(全国青少年信息学奥林匹克竞赛(NOI)、国际大学生程序设计竞赛(ICPC)、中国大学生程序设计竞赛(CCPC)、中国高校计算机大赛 团体程序设计天梯赛等)的入门学习。
近年来,Python语言凭借其在数据分析领域的优势得以快速发展,众多软件厂商也相继推出了支持Python的量化交易平台。本书是介绍Python编程及其在量化交易领域的实践技巧的图书,旨在帮助读者掌握基本的Python编程技能,并顺利应用于期货量化交易实践。 本书内容分为两篇。篇是Python基础,通过13章内容介绍了Python编程的基础知识,如语法规则、数据类型、函数、类、装饰器、异常处理、进程和线程等;第二篇是期货量化交易,通过8章内容介绍了Python在期货量化交易中的应用,并基于天勤量化交易平台讲解开发实践,涉及pandas模块、TqSdk的接口、函数、量化策略的框架、图形化编程及时间序列相关的知识等。 本书适合对期货量化交易感兴趣的普通投资者和投资机构专业人员阅读,读者可以具备一定的?Python基础,也可以通过本书从头学习Python基础知识,再进一步延
本书深入讲解Python OpenCV的核心技术,并通过大量的代码和项目实战,充分展示了如何将这些技术在不同领域中实现。本书的主要内容如下: 第1章介绍Python和OpenCV的基础知识,包括Python和OpenCV的起源、优势、版本、安装及应用场景等; 第2章介绍图像基础知识,包括图像的读取、显示、保存以及像素处理等; 第3~9章介绍图像处理的高级技术,包括使用NumPy进行图像操作、绘制图形的方法、直方图的应用、图像滤波技术、图像形态学操作,以及使用OpenCV进行图形检测和模板匹配; 第10章介绍图像分析与修复,包括使用OpenCV进行图像分析及图像修复技术; 第11~13章介绍特征检测、视频处理和人脸识别,包括使用OpenCV检测和匹配图像中的特征点、使用OpenCV 进行视频处理,以及人脸识别技术; 第14章介绍ChatGPT 和OpenAI API,包括使用ChatGPT 辅助编写代码,以及利用OpenAI API将ChatGPT 的功能嵌入自己的应
本书由流行深度学习框架Keras之父弗朗*瓦 肖莱执笔,通过直观的解释和丰富的示例帮助你构建深度学习知识体系。作者避免使用数学符号,转而采用Python代码来解释深度学习的核心思想。全书共计14章,既涵盖了深度学习的基本原理,又体现了这一迅猛发展的领域在近几年里取得的重要进展,包括Transformer架构的原理和示例。读完本书后,你将能够使用Keras解决从计*机视觉到自然语言处理等现实世界的诸多问题,包括图像分类、图像分割、时间序列预测、文本分类、机器翻译、文本生成等。
《轻松学Python编程》详细介绍Python编程中的核心知识和技术,并列举了大量的编程示例。全书共12章,内容主要包括编写和运行Python代码的方法、Python代码的组成结构、Python编程的核心概念、数字的输入方法和运算方式、输入和处理字符串、转义字符、创建与处理列表和元组、打包和解包元组、创建与处理字典和集合、使用if语句检测条件、使用match语句检测多个值、使用for语句迭代数据、使用while语句重复执行代码、创建与使用函数和匿名函数、定义不同类型的参数、处理不同作用域中的变量、创建与使用类和子类、创建和导入模块、处理不同类型的文件、使用Tkinter工具开发GUI程序、处理Python程序错误等。《轻松学Python编程》还包含Python常用术语、Python常用函数和Python常用语句3个附录。 《轻松学Python编程》附赠示例源代码、重点内容的多媒体视频教程和教学课件
《Python计算机视觉与应用案例》以Python为平台,以 概述 案例 的方式系统地对计算机视觉进行实战分析。本书先介绍计算机视觉编程基础知识,接着介绍在各个领域利用Python解决计算机视觉问题,最后通过两个经典案例综合分析计算机视觉应用。为了帮助读者更好地掌握相关知识,各章节都通过概述与案例相结合的方式,让读者在掌握概念的同时举一反三,掌握程序设计的方法,利用程序设计解决实际问题。 《Python计算机视觉与应用案例》适合想深入研究Python计算机视觉的开发者阅读参考,也可作为高等院校相关专业的教材。
编程是一项充满乐趣的挑战,想上手非常容易!在本书中,沃伦和卡特父子以亲切的笔调、通俗的语言,透彻、全面地介绍了计算机编程世界。他们以简单易学的Python语言为例,通过可爱的漫画、有趣的示例,生动地介绍了变量、循环、输入和输出、数据结构以及图形用户界面等基本的编程概念。与第2版不同,第3版的示例使用Python3而不是Python2,另外添加了关于网络的新内容。只要懂得计算机的基本操作,任何人都可以跟随本书,由简入难,学会编写Python程序,甚至制作游戏。
本书是国内首先使用 Python tkinter 设计 GUI 的中文书籍之一。本书主要讲解如何在窗口内使 用 Python 的内部模块 tkinter 设计图形用户接口 (GUI) 程序,让用户可以利用图形接口与计算机沟通。 tkinter 模块是一个跨平台的窗口应用程序,使用它设计的程序可以在 Windows 、macOS 、Linux 系 统上执行。 2019 年《Python GUI 设计 tkinter 菜鸟编程》一经出版便受到广大读者的喜爱。为了使其内容 更丰富,本书在其基础上增加了一些重要的项目实例,全书超过 312 个程序实例,一步一步讲解 tkinter 控件 (Widget) 的基础知识,同时也将应用范围扩充至小算盘、分形 (Fractal) 设计、文书编 辑、走马灯、模拟海龟绘图、球类竞赛、风扇设计、单个或多个反弹球设计、钟摆、直方图动态排 序、动画与游戏设计、MP3 音乐播放器。Python 是一门可以灵活使用的程序语言,本书的特色是 对 tkinter 最基础
Python是目前比较热门的编程语言,以简单易学、应用广泛、类库强大而著称,是实现机器学习算法的首选语言。《Python机器学习与应用案例》理论与实践相结合,基于Python 3.12.0版本介绍Python机器学习的相关内容。全书共10章,分别介绍了机器学习的基础知识、近邻法、数据降维、分类算法、回归算法、聚类算法、神经网络、推荐算法、频繁项集、数据预处理。通过本书的学习,读者可了解Python编程及在机器学习中的应用。 《Python机器学习与应用案例》可作为对Python和机器学习感兴趣的初学者的参考书,也可作为从事Python开发的广大科研人员、学者、工程技术人员的参考书,还可作为高等院校人工智能、计算机等相关专业的教材。
本书以Python3.10.7为平台,以实际应用为背景,通过概述 经典应用相结合的形式,深入浅出地介绍了Python人工智能分析与实战相关知识。全书共8章,主要内容包括人工智能绪论、Python编程与进阶、Python数学与运算、机器学习大战、神经网络大战、深度学习大战、强化学习大战、人工智能大战等内容。通过本书的学习,可使读者领略到Python的简单、易学、易读、易维护等特点,同时感受到利用Python实现人工智能的普遍性与专业性。 本书可作为高等学校相关专业本科生和研究生的教学用书,也可作为相关专业科研人员、学者、工程技术人员的参考用书。
《Python数据可视化从入门到项目实践(超值版)》详细介绍Python数据可视化编程涉及的几个常用库的使用方法,并列举了大量的数据可视化编程示例。全书共8章,内容主要包括在Python中安装和导入软件包、编写代码和打印数据、函数式编程和面向对象编程、使用Python内置对象以及NumPy和Pandas中的核心对象为图表构建数据的方法、Matplotlib图表的整体组成、创建图表的基本流程和两种编程方式、设置Matplotlib默认选项、使用Matplotlib库创建图形和坐标系、设置图形外观、设置坐标轴、为数据点添加注释、添加图表标题和图例、添加网格线和参考线,以及将图表保存为图片文件、使用Matplotlib/Seaborn/Pyecharts三个库创建不同类型的图表,以及使用它们进行数据可视化项目实战等内容。另外,《Python数据可视化从入门到项目实践(超值版)》附赠示例源代码、重点内容的多媒体
本书首先介绍深度学习,并与其他机器学习模型进行比较,并阐述与TensorFlow互补的用于创建深度学习模型的技术,如Panda、Scikit-Learn和Numpy。随后介绍有监督的深度学习模型,并使用单层的多个感知器构建浅层神经网络,使用Tensorflow 2.0和Keras API创建真实的应用程序。随后是数据增强和批处理规范化方法,并使用MNIST数据集训练CNN。最后是使用自动编码器的理论应用和无监督学习,以及使用tf-agent模型的强化学习。本书主要面向深度学习和机器学习API领域的数据科学家和程序员。
《Python Cookbook(第3版)中文版》介绍了Python应用在各个领域中的一些使用技巧和方法,其主题涵盖了数据结构和算法,字符串和文本,数字、日期和时间,迭代器和生成器,文件和I/O,数据编码与处理,函数,类与对象,元编程,模块和包,网络和Web编程,并发,实用脚本和系统管理,测试、调试以及异常,C语言扩展等。 本书覆盖了Python应用中的很多常见问题,并提出了解决方案。书中包含了大量实用的编程技巧和示例代码,并在Python 3.3环境下进行了测试,可以很方便地应用到实际项目中去。此外,《Python Cookbook(第3版)中文版》还详细讲解了解决方案是如何工作的,以及为什么能够工作。 《Python Cookbook(第3版)中文版》非常适合具有一定编程基础的Python程序员阅读参考。
矩阵是重要的数学工具,也是当今人工智能、机器学习等领域重要的数据处理对象。本书作为矩阵理论的教材,将由浅入深地介绍矩阵的基本理论,包括矩阵的概念与运算、线性方程组、线性映射和线性变换、行列式、向量空间、特征值和特征向量、相似矩阵、二次型等,还有这些基本理论在机器学习上的简单应用。此外在本书各章还附上了对应的Python与MATLAB编程实践代码,以供需要工程实践的读者参考应用。 本书可作为高等院校工科专业的本科生教材,也可作为研究生入学考试的参考书,还可供对矩阵理论有需求的工程技术人员阅读参考。