《费马大定理:一个困惑了世间智者358年的谜》是关于一个困惑了世间智者358年的谜题的故事。书中既有振奋人心的故事讲述方式,也有引人入胜的科学发现的历史。西蒙 辛格讲述了怀尔斯经过数年秘密辛苦的工作,终于解决了挑战性的数学问题的艰辛旅程。
从数学的角度来看,世界是由微分和积分构成的。因此,学习微积分就是我们主动了解我们生活的世界的一种方式。微积分在数学中占据着重要的地位,是一个充满数学魅力和乐趣的领域。 然而,微积分的理论性非常强,学习难度大,是最容易挫伤学生学习数学积极性的部分之一。为了最大限度地发挥学生的主观能动性,在最短的时间内抓住并阐明本质,本书以师生对话的方式,配以简单的图片,用浅显易懂的文字说明了微积分的基本原理。 本书共包括四个部分,分别是:课前准备、60分钟揭开微积分神秘面纱的四大步骤、所谓 微分 是指什么?、所谓 积分 是指什么?。 本书通过日常生活中的常见事例说明了微积分的基本原理、公式推导过程及实际应用意义。本书讲解循序渐进,生动亲切,没有烦琐复杂的计算过程,是一本写给不擅长数学的成年人的学习微积
在中国古代科学技术的发展中,算学发展一直伴随着科技的发展,并且在解决技术与工程发展中的问题发挥出色。本书以图文并茂的形式为少年朋友揭开中国古代数学的神秘面纱。在这里,您将了解从 记数 到 算术 的发展过程,了解被称为 中国数制 的十进位值制记数法,了解古人计算面积和体积所使用的方法,了解《九章算术》《孙子算经》等重要典籍,了解神秘的 河图 与 洛书 、华容道、鲁班锁等经久不衰的古代益智游戏,领略中国古代数学的魅力。
全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*。省级骨干教师培训班参考用书。
文章从数字与数字类型讲起,介绍数字、数学运用的历史、趣味故事,数学在国际象棋、文学电影、艺术等方面的应用等,用生动活泼的语言向读者介绍生活中数学的运用,激发读者学习数学的兴趣,鼓励大家继续探索生活中的数学。
《数学随笔》是作者近年来在微信中发表的一些数学随笔,每次一篇,涵盖了代数、几何、数论、组合、分析等方面的知识。日积月累,集成此书。对热爱解题,希望提高解题技巧的读者极有实用意义。通过研读此书,不仅可以掌握数学解题的方法,还可以提高数学解题的能力。 《数学随笔》适合初、高中师生阅读,亦可供数学爱好者参考。
《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学
2000年,美国马萨诸塞州剑桥的克莱基金会发起了一场颇具历史意义的竞赛: 任何能够解决七大数学难题之一的人,在专家认定其解答正确之后,都可以获得100万美元的奖金。对这七大问题的解答(或者解答不出)将对21世纪的数学研究产生巨大的影响。这些问题涉及纯粹数学和应用数学中大多数*迷人的领域: 从拓扑学和数论到粒子物理学、密码学、计算理论甚至飞机设计。著名的数学阐释者德夫林在本书中向我们讲了这七大难题的内容、由来以及它们对数学和科学的意义。
圆作为平面几何的一部分,与其他任何组成部分具有同样的重要性。此外,它还是*一种可以画在球面上的 线 。这使得圆在几何学世界中也许比直线更加无所不在,因为直线在球面几何中是不存在的。本书考察的就是圆在几何学中发挥作用的那些*常见方面。 全书共11章,涉及圆所呈现的种种几何奇观,包括圆的历史、圆的各种关系、圆填充问题、尺规作图问题、切圆探究、摆线等,以及艺术作品和建筑中的圆,还用一整章讲述了球面几何学。
《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为 基础篇 和 提高篇 ,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为基础篇,分为平面几何基础、立体几何基础和打开证明之门三个章节。本书较为重视几何语言,在进入具体图形的学习之前,用大量篇幅详细讲解了定义、命题、条件、结论、公理、定理、性质等基本概念,有助于读者区分理解。 本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
本书这本经久不衰的畅销书出自一位著名数学家G·波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
本书为菲尔兹奖、日本学士院奖、日本文化勋章得主,日本数学家广中平?v先生的思想文集。书中以广中平?v先生与 奇点解消问题 的故事为线索,讲述了广中平?v在挑战 奇点消解问题 的过程中,对 数学学习 数学教育 以及 创造性思维 的独到感悟,以及对数学证明与发现的深入思考。另外,本书还收录了广中平?v先生研究生涯中的珍贵访谈、笔记、照片资料,是了解广中平?v先生数学思想以及创造性思维的佳作。
《数学概念的演变》是一本由一位杰出的数学家所著的杰作,它提供了一个独特的视角来看待数学的发展和演变。与研究数学的历史或哲学不同,怀尔德把数学视为一种广泛的文化现象。他的研究揭示了数和长度等概念是如何受到历史和社会实践的影响的。从初步的概念开始,本研究探讨了数的早期演变、几何的演变以及实数中对无穷的征服。对演变的过程进行了详细的考察,并以对现代的演变的研究结束。 《作为文化体系的数学》不能被看成是一部纯粹研究数学历史的著作。数与几何的发展基本上体现了高等数学发展的所有特点。作者通过数与几何概念的演变,深刻地揭示数学作为一种文化现象,它的发展同时受到历史和社会实践的影响。作者首次引入人类学的方法而非专业数学的方法来研究数学的发生、发展和变化过程,得出了一些十分重要的结论,为理解
数学就是一个与不可能发生近距离冲突的故事,因为数学中的一切伟大发现都接近于不可能。有许多表面看来不可能的例子,它们对于数学而言很重要。 渴望不可能 是数学中取得的许多进步的源头。本书中的大多数例子:无理数、虚数、无穷远点、弯曲空间、理想,以及各种类型的无穷 这些概念初看起来是不可能的,因为我们的直觉无法领会它们,但它们在数学符号体系的帮助下是可以被精确理解的,而数学符号体系是对于我们的感官的一种技术延伸。 本书涉及看似不可能的艺术、文学、哲学和物理学,摆脱了对数学概念的狭隘解释,拓宽了学生的视野。
《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数的递归关系)、容斥原理、伯恩赛德计数定理和波利亚计数定理。《组合数学及应用》共分八章,每一章都配有一个计算机、电子信息、人工智能等领域的应用案例,以展示数学原理或方法在这些专业问题上的应用。此外,每章末附有习题,供读者练习和进一步思考,以巩固和深化理解。《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数
这本教材包含了初等数论的基础知识,穿插了有关史料及费马、欧拉、高斯等数论大师的生平事迹,也介绍了许多数论名题及相关进展。本书包括正文7章及附录:自然数的基本性质,整除性、素数及算术基本定理,带余除法、*公因数及*小公倍数,辗转相除法与线性丢番图方程,同余式、剩余类及中国剩余定理,欧拉定理、费马小定理及威尔逊定理,二次剩余理论及其应用,作者提出的十个数论猜想。本书起点较低,在每章后都配有习题,便于具有高中以上水平的读者自学。 本书可作为高等学校 初等数论 课程的入门教材,也可作为高中数学教师的参考用书。
苹果有 3 个,蜜橘有 3 个,两边 同样 是 3 个。但 苹果 与 蜜橘 并不相同,如何能视为 同样 呢? 数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文字、难懂的公式,犹如一堆没有灵魂的音符,这实在让人遗憾。本书作者巧妙地将图象和数学概念结合在一起,演奏了一曲华美的乐章。与考试和编程中使用的微积分知识相比,本书的内容相对简单,但不失趣味地揭示了微积分 细细切分、密密汇集 的思想,并十分形象地讲述了*值、极限、斜率、函数等知识。 奇幻旅程开始啦!
本书坚持“古为今用”、“洋为中用”重视数学发展规律、数学思想和方法,以“尊重史实,突出重点”的原则选取史料,精选古今中外数学产生、发展的重要事件、重要人物和重要成果,将古代、近代和现代各国或地区的数学虫作简明、概括性的宏观介绍与评述。
《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》分为六个部分,从 多项式方程的求解与数系的扩张 、 整数的一些基本概念、定理与理论 、 数域、扩域与代数扩域的一些基本理论 、 多项式的一些基本概念、定理与理论 、 阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域 、 多项式方程的根式求解、克罗内克定理与鲁菲尼 阿贝尔定理 逐步展开,尽可能地用通俗易懂的方式细说 不可能性定理 的种种方面。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》可供高中学生、理工科大学生、大中学校数学教师以及广大的数学爱好者在学习与教学解多项式方