该教材内容主要涵盖材料的基础知识介绍、原子的结构与键合、金属和陶瓷的结构、高分子结构、固体缺陷、扩散、力学性能、变形和强化机制、失效、相图、相变、电性能、材料类型及其应用、材料的合成制备与加工、复合材料、材料的腐蚀与降解、热性能、磁性能、光学性能、材料科学与工程所涉及的经济,环境和社会问题 。 本书内容全面、先进。不仅是材料学科的必修课教材,也是应用物理、化学工业、信息工程、生物工程、电子电工、车辆工程、航空航天等专业的必要补充教材。也可为专业人员提供参考价值。
本书为斯米尔诺夫高等数学第三卷第三分册。包括多变数函数和方阵函数、线性微分方程、特殊函数三章内容,及录等部分。
《先驱者的足迹—高等数学的形成》一书于2004年由东北大学出版社印刷出版,并于2005年第二次印刷。现有的高等数学教材及习题集等书籍早已琳琅满目,单纯叙述数学史的书籍也日渐增多。但阐述高等数学主要概念的发展、演变历史以及其中包含的深刻思想的书籍并不多见。 版图书的出版目的在于为大学高等数学提供配套的读物作为课堂内容的补充,能够让学生了解到课本中所学内容的产生、发展、思想方法及相关发明者的奋斗过程。同时大学数学教师也需要这样的参考资料以丰富自己的教学内容。在河北省科学技术厅科普原创资助专项(项目编号:15K56227D)的资助下,第二版图书得以出版。这次再版图书将读者范围从大学生、大学数学教师以及数学爱好者,扩展到了中学生以及年龄更小的数学爱好者。内容仍以 版图书为基础,从数学的起源与早期发展、初
该教材内容主要涵盖材料的基础知识介绍、原子的结构与键合、金属和陶瓷的结构、高分子结构、固体缺陷、扩散、力学性能、变形和强化机制、失效、相图、相变、电性能、材料类型及其应用、材料的合成制备与加工、复合材料、材料的腐蚀与降解、热性能、磁性能、光学性能、材料科学与工程所涉及的经济,环境和社会问题 。 本书内容全面、先进。不仅是材料学科的必修课教材,也是应用物理、化学工业、信息工程、生物工程、电子电工、车辆工程、航空航天等专业的必要补充教材。也可为专业人员提供参考价值。
《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的适用对象包括:中学信息学奥林匹克竞赛选手及辅导老师、大学ACM程序设计比赛选手及教练、高等院校计算机相关的师生、程序设计爱好者等。数学是计算机程序设计的灵魂。利用数学方面的知识、数学分析的方法以及数学题解的技巧,可以使得程序设计变得轻松、美观、高效,而且往往能反映出问题的本质。在外各项程序设计比赛(比如,ACM、NOI)活动中,越来越多地用到各种复杂的数学知识,对选手的数学修养要求越来越高。编写《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的目的就在于给广大ACM队员、NOI选手以及编程爱好者,分析一些程序设计中常用的数学知识和数学方法。
本书给出适当的理论分析,如(1)给出的Euler-Lagrange方程,它是N-S方程和一个4阶椭圆型方程的耦合系统;(2)证明相应的无限维控制系统解的存在性,可动边界N-S方程解的存在性及解对边界几何的连续依赖性;(3)N-S方程对边界形状的Gateaux导数所满足的方程以及存在性的证明。本书另一个内容是给出耦合系统数值解方法和三维旋转N-S方程维数分裂方法.这个方法的特点是用二维流形分割区域,在每个子区域(流层)上建立局部半测地坐标系,将N-S方程分解为膜算子(流形切空间上)和弯曲算子(流形的法线方向算子),然后将弯曲算子用欧氏中心差分逼近,得到二维流形上的2D-3CN-S方程,用一系列二
《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的适用对象包括:中学信息学奥林匹克竞赛选手及辅导老师、大学ACM程序设计比赛选手及教练、高等院校计算机相关的师生、程序设计爱好者等。数学是计算机程序设计的灵魂。利用数学方面的知识、数学分析的方法以及数学题解的技巧,可以使得程序设计变得轻松、美观、高效,而且往往能反映出问题的本质。在外各项程序设计比赛(比如,ACM、NOI)活动中,越来越多地用到各种复杂的数学知识,对选手的数学修养要求越来越高。编写《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的目的就在于给广大ACM队员、NOI选手以及编程爱好者,分析一些程序设计中常用的数学知识和数学方法。
本书给出适当的理论分析,如(1)给出的Euler-Lagrange方程,它是N-S方程和一个4阶椭圆型方程的耦合系统;(2)证明相应的无限维控制系统解的存在性,可动边界N-S方程解的存在性及解对边界几何的连续依赖性;(3)N-S方程对边界形状的Gateaux导数所满足的方程以及存在性的证明。本书另一个内容是给出耦合系统数值解方法和三维旋转N-S方程维数分裂方法.这个方法的特点是用二维流形分割区域,在每个子区域(流层)上建立局部半测地坐标系,将N-S方程分解为膜算子(流形切空间上)和弯曲算子(流形的法线方向算子),然后将弯曲算子用欧氏中心差分逼近,得到二维流形上的2D-3CN-S方程,用一系列二