徐俊明所著《图论基础教程(英文版)/运筹与管 理科学丛书》着眼于有向图,将无向图作为特例,在 的深度和广度上系统地阐述了图论的基本概念、 理论和方法以及基本应用.全书内容共分7章,包括 Euler回与Hamilton圈、树与图空间、平面图、网络 流与连通度、匹配与独立集、染色理论、图与群以及 图在矩阵论、组合数学、组合优化、运筹学、线性规 划、电子学以及通讯和计算机科学等多方面的应用. 每章分为理论和应用两部分,章末有小结和参考文献 .各章内容之间联系紧密,许多的定理给出 最简单的多种证明.每小节末有大量习题,书末附有 记号和名词索引.
哥德巴赫猜想、孪生素数、素数分布、华林问题、除数问题、圆内整点问题、整数分拆及黎曼猜想等名数论问题吸引了古今无数的数学爱好者,《解析数论基础(第二版)》全面详细地讨论了迄今为止研究这些问题的重要的分析方法、理论和结果,介绍了它们的历史及新进展,是研究这些问题必不可少的入门书.读者对象是高年级学生、研究生、数论工作者以及具有数论知识及分析知识的数学爱好者.
本书是Springer《数学研究生教材》第73卷,初版于1974年,30年来一直是美国及世界各国大学数学系采用的研究生代数教本。此书Springer已重印12次,由此证明这是一部经典的研究生教材。全书取材适中,论述清晰,自成系统.本书在一些问题的处理上有其独到之处,如Sylow定理的证明、伽罗瓦理论的处理、可分域的扩张、环的结构理论等。书中有大量的练习和精心挑选的例子。 目次:群和群的结构;环;模;域和伽罗瓦理论;域的结构;线性代数;交换环和模;环的结构;范畴论。 读者对象:数学专业研究生和科研人员.
【树木是大地写上天空的诗】?
本书作者是当代著名的前苏联代数几何学家,是一位有独创性,知识极为渊博的数学家。本书问世(俄文版1972年初版,英文版1977年初版)40多年来,一直被视为一部重要的代数几何经典名著.与同类书相比,本书内容全面,详尽,注重给出抽象理论的几何背景和起源,并配有充分反映几何本质的实例和图解。本书所需预备知识仅限于代数基础,是高年级本科生和研究生学习代数几何的*.
丢番图逼近论是数论的重要而古老的分支之一,圆周率π的估计、天文研究和古历法的编制,以及连分数展开,越数的构造,等等,都促成这个分支的形成。近代和现代数学的发展,特别是丢番图方程和越数论的研究,以及一致分布点列在拟MonteCarlo方法中的应用等,又使它发展成为一个活跃的当代数论研究领域。DiophantineApproximation是关于丢番图逼近论的一本专著,1980年列入Springer出版社有名的LectureNotesinMathematics系列丛书出版,问世后即被各国数论研究人员广泛引用,成为一本关于丢番图逼近论的经典著作。
哥德巴赫猜想、孪生素数、素数分布、华林问题、除数问题、圆内整点问题、整数分拆及黎曼猜想等名数论问题吸引了古今无数的数学爱好者,《解析数论基础(第二版)》全面详细地讨论了迄今为止研究这些问题的重要的分析方法、理论和结果,介绍了它们的历史及新进展,是研究这些问题必不可少的入门书.读者对象是大学高年级学生、研究生、数论工作者以及具有数论知识及分析知识的数学爱好者.
本书是一部经典教科书,初版于1934年,第2版于1952年出版,1952年以后又11次做了重印,是半个多世纪以来不等式领域中一部很具影响力的图书。目次:导论;基本平均值;任意函数和凸函数论的平均值;微积分的各种应用;无穷极数;积分;变量微积分的应用;双线性型和多线性型的若干定理;希尔伯特不等式及其模拟和扩张;重排。
丢番图逼近论是数论的重要而古老的分支之一,圆周率π的估计、天文研究和古历法的编制,以及连分数展开,越数的构造,等等,都促成这个分支的形成。近代和现代数学的发展,特别是丢番图方程和越数论的研究,以及一致分布点列在拟MonteCarlo方法中的应用等,又使它发展成为一个活跃的当代数论研究领域。DiophantineApproximation是关于丢番图逼近论的一本专著,1980年列入Springer出版社有名的LectureNotesinMathematics系列丛书出版,问世后即被各国数论研究人员广泛引用,成为一本关于丢番图逼近论的经典著作。