这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
本书根据作者多年的教学改革实践修订而成,内容包括*事件与概率、离散型*变量及其分布、连续型*变量及其分布、*变量的数学特征、*变量序列的极限、现代概率论基础简介、数理统计的基本概念、参数估计、假设检验、回归分析与方差分析。书中各章附有相当数量的习题,书末附有习题的参考答案,供读者查阅。本书在*制定的教学大纲的基础上,紧扣硕士研究生入学考试大纲,并以此规范概率统计中的术语与记号。
《深入浅出统计学》具有 深入浅出系列 的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
由美国当代著名统计学家L.沃塞曼所著的《统计学完伞教程》是一本几乎包含了统计学领域全部知识的优秀教材,本书除了介绍传统数理统计学的全部内容以外,还包含了Bootstrap方法(白助法)、独立性推断、因果推断、图模型、非参数同归、正交函数光滑法、分类、统计学理论及数据挖掘等统计学领域的新方法和技术.本书不但注重概率论与数理统计基本理论的阐述,同时还强调数据分析能力的培养.本书中含有大量的实例以帮助广大读者快速掌握使用R软件进行统计数据分析。
《好看的数学故事:概率与统计卷》以讲故事的方式介绍概率统计的概念和理论发展的历史。 从流传数千年的投币和骰子游戏到古老的八卦,从古印度《吠陀经》的韵律到希伯来字母排列的神秘咒语,古人们逐渐发现了排列与组合的基本规律。当阿拉伯的骰子游戏传入经过文艺复兴的欧洲,概率的概念开始明晰起来。 起初的概率,多半应用在赌博游戏上,不仅是投币和骰子,还有纸牌、赛马等等。这些东西在学术领域似乎不值一提,但古典概率理论一旦出现,立即在社会各个领域发现重要的应用价值。统计学随之而生。 通过字母分析破译密码,通过死亡记录探究传染病的危害,新生婴儿的性别比例,居民寿命的期望值和保险年金,统计学在人类社会从古典社结构进入现代结构的发展过程中发挥了极其重要的作用。天文学、实验物理学和数学的发展推动了概率统计
本书是剑桥大学统计实验室的戴维 威廉姆斯教授在为剑桥大学三年级大学生所开设课程的讲义的基础上写成的 , 是一本基于测度论的方法来介绍概率论的严格理论的入门书。 该书的*特点与新颖之处是用了近三分之一的篇幅来介绍先进的鞅的理论与方法(这一点连作者本人也颇为自许); 此外,还有如从第 4 章 独立性 开始便引入 - 代数化的表达方式 , 将 - 代数视为总结、综述信息的一种自然的工具 , 这对于后面条件期望概念的一般化与鞅的理论的叙述都是至关重要的。 再如将某些定理的叙述、阐释与定理的证明分开进行(将定理的证明放在附录中) , 这样更便于读者自学。作者学养深厚、涉猎广博、文笔生动 , 书中内容涉及概率论的众多分支领域 , 信息量巨大 , 且不乏一些有趣并富于启发性的例子 , 相信读者阅后定能获益良多。
本书以数据的常用统计分析方法为基础,在简明扼要地阐述统计学基本概念、基本思想与基本方法的基础上,讲述与之相对应的R 函数的实现,并通过具体的例子说明统计问题求解的过程。 本书注重思想性、实用性和可操作性;在内容的安排上不仅包含了基础统计分析中的探索性数据分析、参数的估计与假设检验,还包含非参数统计分析的常用方法、多元统计分析方法; 此外还安排了在R 新生态下数据治理与可视化的拓展性内容。每一部分都通过具体例子重点讲述解决问题的思想、方法和在R 中的实现过程。阅读本书,读者不仅可以快速学会R 的基本原理与核心内容,还可以根据提供的例子与相应的R 程序学会解决问题的统计计算方法与基本的编程技术,为解决更复杂的统计问题奠定扎实的基础。 本书可作为各专业本科生、研究生数理统计或应用统计课程的基础教
我们是不是比父母更聪明?开车时打电话与酒驾一样危险吗?坐飞机和开车,哪种方式更安全?钻石越重,价格就越高吗?小学四年级的学生可以用统计学做什么? 如果你想知道这些问题的答案,就来阅读本书吧。 大数据时代,统计学是读懂、听懂和看懂事情真相的基础,数据挖掘与统计分析已成为现代人必不可少的技能。《妙趣横生的统计学 培养大数据时代的统计思维(第四版)》是一本美国流行的统计学应用入门书。它通过生活中有趣的案例、直观的图表阐述了各种统计概念与统计技术的应用,没有枯燥乏味的理论知识、生涩难懂的理论证明,只有日常生活所需要的统计思想、正确分析数据的基本路径,真正做到了通俗易懂、深入浅出。 如果你想更好地理解如经济学、心理学等课程中将会用到的统计学知识,如果你正在寻找提高统计分析能力的方
本书阐述有不等式约束的参数估计和假设检验的方法和理论,及其在小一乘估计和随机序检验等方面的应用。本书把数学规划的方法和思想用到数理统计中,使得可解决的统计问题的范围进一步扩大。
本书由一篇篇有趣的数学故事组成,这些故事把题目情景化,让读者觉得不是在做数学题,而是在处理身边的事儿,比如:有个同班同学恰好跟我同一天生日的概率是多少?做饭也用得上数学?等等。当孩子对数学感到恐惧的时候,这时候是不能强迫的,让孩子认识到数学不难,数学是和生活息息相关的,在生活的方方面面都有数学的“化身”。
本书是国内全面讨论概率论发展与先进数学技术的学术专著,较全面、翔实地概述了概率论的发展历史。从初的博弈分析问题到现今方法论综合性学科,全书勾勒出概率论兴起、发展和壮大的清晰脉络,并简要介绍了当前概率论学科的主要研究方向和发展动态。本书也试图从概率论教学角度诠释概率思想,以期让更多的读者从中受益。
自Shewhart博士在20世纪20年代提出第一个控制图后,现在关于控制图的研究结果已十分丰富,且取得了良好的社会和经济效益。特别是,近年来出现的多个新的研究方向也取得了一些很好的研究成果,但系统介绍这些成果的著作并不多,而本书将作这方面的努力与尝试,其中有部分成果来自作者所在的课题组,特别是关于监测profile的研究内容。本书主要讲述近年来关于统计过程控制图的一些基本理论与方法,如阶段I控制图、Shewhart控制图、CUSUM控制图、EWMA控制图、关于监控profile的控制图等;另外,本书也包含有关相关数据、多元数据及非参数控制图的一些内容;再者,本书也介绍了有关动态控制图的一些研究成果;最后,作者把有关控制图的ARL及ATS的计算方法进行了较详细的总结。
本书源自的哈佛统计学讲座,介绍了帮助读者理解统计方法、随机性和不确定性的基本语言和工具,并列举了多种多样的应用实例,内容涉及偶然性、悖论、谷歌的网页排名算法(PageRank)及马尔可夫链蒙特卡罗方法(MCMC)等。本书还探讨了概率论在诸如基因学、医学、计算机科学和信息科学等领域的应用。全书共分13章,分别介绍了概率与计数、条件概率、随机变量及其分布、期望、连续型随机变量、矩、联合分布、变换、条件期望、不等式与极限定理、马尔可夫链、马尔可夫链蒙特卡罗方法、泊松过程等内容。用容易理解的方式来呈现内容,用实例来揭示统计学中基本分布之间的联系,并通过条件化将复杂的问题归约为易于掌控的若干小问题。书中还包含了很多直观的解释、图示和实践问题。每一章的结尾部分都给出了如何利用R来完成相关模拟和计算的方法。
在数学科学的几乎所有的分支中,不等式常常起着重要的甚至是关键的作用。本书搜集整理了概率论中一批常用的基本不等式,并对其中的绝大多数不等式给出了证明。除了一些熟知的不等式以外,书中对某些不等式还提供了相关的参考文献。
本书是结合作者多年的教学经验,根据理工科“数学物理方程”教学大纲的要求及大气科学等专业的需要而编写的。本书以方法为主线,内容包括典型模型的定解问题建立、方程的分类与标准型、行波法、分离变量法、积分变换法和格林函数法等。在此基础上,介绍了研究偏微分方程定性理论的极值原理和能量方法,探讨了贝塞尔函数及勒让德函数的应用。本书叙述注重启发性、系统性与应用性,把较难的概念与尽量浅显的例子适当结合,将方法运用于各种应用驱动的偏微分方程模型中,并补充和扩展了相关知识到交叉应用领域。书中配有较多的典型例题和习题,可供读者阅读与练习。
1)第四章---第九章是本书的主体,讲述各种类型的回归方程,包括线性回归方程、拟线性回归方程、约束线性回归方程、非参数回归方程、半参数回归方程、函数系数回归方程(参数变量函数系数线性回归方程,参数变量函数系数半参数回归方程,回归变量函数系数线性回归方程,回归变量函数系数半参数回归方程)、随机过程回归方程(随机过程线性回归方程,Gauss--Markov线性回归方程,随机过程非参数回归方程)、逆回归方程(线性逆回归方程,线性逆回归方程组)以及随机向量密度函数(有文献已经指出,此问题可以化为回归方程的模式来解决),其中有不少为首倡;(2)*章概率理论及附录B测度论,为统计回归分析理论的概率统计基础;(3)第二章Hilbert空间、第三章泛函逼近论,是统计回归分析理论的泛函分析基础,其中相当部分的内容是专为统计回归分