本书源自的哈佛统计学讲座,介绍了帮助读者理解统计方法、随机性和不确定性的基本语言和工具,并列举了多种多样的应用实例,内容涉及偶然性、悖论、谷歌的网页排名算法(PageRank)及马尔可夫链蒙特卡罗方法(MCMC)等。本书还探讨了概率论在诸如基因学、医学、计算机科学和信息科学等领域的应用。全书共分13章,分别介绍了概率与计数、条件概率、随机变量及其分布、期望、连续型随机变量、矩、联合分布、变换、条件期望、不等式与极限定理、马尔可夫链、马尔可夫链蒙特卡罗方法、泊松过程等内容。用容易理解的方式来呈现内容,用实例来揭示统计学中基本分布之间的联系,并通过条件化将复杂的问题归约为易于掌控的若干小问题。书中还包含了很多直观的解释、图示和实践问题。每一章的结尾部分都给出了如何利用R来完成相关模拟和计算的方法。
科学认为任何事情都有一定的几率,无论是彩票、赌博、选择伴侣、还是计算外星生命存在的可能性。《几率:运气、随机和概率背后的秘密(探索 新知)》是将美国科普杂志《进步科学人》中刊载的主题和内容相近的文章汇集而成,探讨了运气、随机、风险和概率背后的秘密。全书由六部分组成,每部分由4-6篇短文组成,从数学、物理学、哲学、进化生物学等学科的角度阐述了概率、运气在人类诞生、日常生活、科技发明、宇宙未来、物种演化等方面发挥的作用及其科学解释。这是一部有趣的作品,即使对物理学、数学不感兴趣的读者也都能有所收获,是一本让读者喜欢物理、数学、生物学的科普读物。
无
概率论与数理统计是从数量方面研究随机现象的统计规律的一门课程,它是高等院校经济管理类专业的基础课之一。它是在经济管理、质量控制、数量经济学、信息论、预测理论和*理论中有着广泛应用的基础课程。 本书系上海财经大学数学学院编写的经济数学系列教材之一。全书共十章,内容包括事件与概率、条件概率与独立性、随机变量及其分布、随机向量及其分布、数字特征与特征函数、极限定理、统计量与抽样分布、参数估计、假设检验、线性统计推断等。每章均配有不同难易程度的适量习题,书末附有习题答案或提示,供读者参考。 本书坚持理论联系实际,取材新颖,注重科学性、现实性、趣味性,努力使学生从教材中深切地感知概率论与数理统计知识在实际工作与生活中的广泛应用。本书在编写中力求内容完整,做到重点突出、联系实际、由浅入深、通俗
本书比较全面系统地介绍蒙特卡罗方法的理论和应用.全书15章,前8章是蒙特卡罗方法的理论部分,包括蒙特卡罗方法简史、随机数产生和检验、概率分布抽样方法、马尔可夫链蒙特卡罗方法、基本蒙特卡罗方法、降低方差基本方法、拟蒙特卡罗方法和序贯蒙特卡罗方法.后7章是蒙特卡罗方法的应用部分,包括确定性问题、粒子输运、稀薄气体动力学、自然科学基础、数理统计学和可靠性、金融经济学及科学实验模拟.
本书是一本集理论与方法、实践与应用为一体的统计教材。全书共9章,主要介绍统计基本概念、数据搜集与显示、数据描述、抽样分布、参数估计、假设检验、相关与回归、时间序列、指数。在本书编写过程中,作者广泛吸纳国内外优秀统计学教材成果,大胆融入现代教学理念,充分结合作者二十多年的统计学教学实践和教材编写经验,各章采取 案例导入-经典理论-本章小结-案例实验-思考题-练习题-实验题 的编写路径,体系完整,结构新颖。全书将统计理论、统计方法、实际案例、实验教学、综合练习融为一体,具有知识性、应用性、趣味性和易读性等特点。电子课件和习题参考答案可登录华信教育资源网www.hxedu.com.cn免费下载。 本书内容丰富,很少涉及统计学理论的数学证明,每章均配有与实际应用紧密联系的案例、练习和实验,运用一至二种软件对案例进行
本书主要介绍了处理反问题(不适定问题)的统计方法,尤其侧重于建模与计算这两大问题。与经典文献中处理反问题的方法不同,本书立足于Bayes统计学的框架,将所有变量都视作随机变量,并把反问题的解以概率密度函数的形式给出。同时,对于数学模型本身存在的误差和数值离散导致的额外误差,本书还创造性地进行了源自建模误差的统计分析。 本书详细讨论了先验模型的构造、测量噪声建模、Bayes估值以及非静态统计反演方法等,并引入Markov链Monte Carlo方法以及最优化方法来探究概率分布。另外从Bayes统计学的角度重新研究了经典正则化方法,揭示了两者之间的关系。对于书中得到的结论和涉及的技法,作者还佐以易懂但深刻的例子帮助读者理解。本书将统计方法应用到一些较为前沿的问题中,例如离散误差分析、模型降阶等。在书中,这些统计方法还被
本书是一本统计学入门教科书,阐述如何通过统计调查,搜集和整理统计资料进行统计研究分析。其主要内容包括统计概述、统计调查、统计整理、综合指标、动态数列、抽样推断、相关与回归分析、统计指数、国民经济核算以及EXCEL统计实践10个项目。本书紧密结合我国高等职业教育的特点,突出了学生实践操作能力的培养,体现 实用、适用、先进 的编写原则和 通俗易懂、精练、可操作 的编写风格,在适度的基础知识与理论体系覆盖下,注重理论指导下的实践技能操作,培养学生使用统计理论和统计方法解决实际问题的能力。本书既可作为职业教育院校经济、管理、人文社科等相关专业的基本教材,又可作为自学考试、网络教育、成人教育的统计入门教材,也可作为广大统计工作者及有关人员学习统计基本理论和方法的基本读物。
《概率论基础》是作者多年教学工作经验的总结与提炼。《概率论基础》介绍概率论的一般理论,《概率论基础》共分5章,内容包括:随机事件及其概率、随机变量和分布函数、随机变量的数字特征、特征函数和极限定理等,各章后都配有适量的习题,书后附习题答案与选解。《概率论基础》内容符合培养目标的要求,既重视基本概念的透析、基本理论的阐述、基本方法的介绍,又特别强调知识发生过程的探索、基本观点的提炼,联系实际讲清概率模型,注重基本观点的提炼,阐述清楚概率论的思想方法,训练学生正确解决概率问题的能力。《概率论基础》体系完整,特色鲜明,论述严谨,推到细致,内容丰富且通俗易懂。
《概率论与数理统计(第2版)/新世纪普通高等教育基础类课程规划教材》是总结编者郑一、王玉敏、冯宝成多年的教学实践经验,按照国家优质教学资源建设质量工程的教材改革的精神,并根据*高等学校数学与统计学教学指导委员会审定的《概率论与数理统计课程教学基本要求》编写的。 《概率论与数理统计(第2版)/新世纪普通高等教育基础类课程规划教材》内容包括:随机事件与概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验、回归分析、应用MATLAB软件等。教材末附有习题答案与提示、附录、术语索引和符号说明。 《概率论与数理统计(第2版)/新世纪普通高等教育基础类课程规划教材》突出了叙述详尽易懂、逻辑思路清晰、知识结构严密、例题习
Themaincontentsofthisbookincludeprincipalcomponentsanalysis,factoranalysis,discriminantanalysisandclusteranalysis,inferenceforamultivariatenormalpopulation,discreteorcategoricalmultivariatedata,copulamodels,linearandnonlinearregressionmodels,generalizedlinearmodels,multivariateregressionandMANOVAmodels,longitudinaldata,paneldata,andrepeatedmeasurements,methodsformissingdata,robustmultivariateanalysis,andselectedtopicsThefocusofthisbookisonconceptualunderstandingofthemodelsandmethodsformultivariatedata,ratherthantediousmathematicalderivationsorproofs.ExtensiverealdataexamplesarepresentedusingsoftwareR.
本书基本内容是依据*的 经济和管理类本科数学基础课程教学基本要求 确定的。全书分为七章,内容包括概率论的基本概念、随机变量及其分布、随机变量的数字特征、统计学基础、统计推断、方差分析、相关分析与回归分析等。 本书在保持内容的系统性和完整性的基础上,融入了R软件的有关内容,并以此为基础介绍概率统计的具体应用,使读者在学习相关理论的同时,可以轻松地完成概率计算与实验模拟、数据整理与统计分析,实现理论与实践的有机结合;同时,本书还为读者配备了数字化资源,包括相关命题证明、模拟实验、R软件应用程序、数据文件、习题答案与提示等内容,便于学生自主学习,提升学习效果。读者可通过扫描二维码或登录数字课程网站,方便地获取相应的资源。 本书可作为高等学校经济和管理类本科专业教材,也可作为其他非数学类
本书系统阐述了线性混合效应模型的基本理论、方法和应用,全书共12章。第1章通过实例引进各种线性棍合效应模型。第2章讨论矩阵论方面的补充知识和线性模型的相关重要定理。第3章讨论线性提合效应模型的固定效应的估计。第4章讨论预测问题。第5~9章系统讨论混合效应模型的方差分量的基本方法与相关理论,包括:方差分析估计、极大似然估计、限制极大似然估计、小范数二次无偏估计、谱分解估计。第10章讨论估计的**性问题。第11章讨论平衡数据情形下的泪合效应模型的各种估计的统计性质。第12章给出了握合效应模型下的假设检验。
本书是一本高等学校非数学专业的概率论与数理统讨教材。全书共9章,内容包括随机事件、随机变量、随机向量、数字特征、极限定理、样本与统计量、参数估计、假设检验,回归分析与方差分析。各章后选配了适量习题,并在书后附有习题答案与选解。书末有4个附录,其中附录一给出了几个重要的分布表,附录三介绍了一些常见的重要概率分布,附录三汇集了近几年的硕士研究生人学统一考试试题及参考答案,附录四介绍了概率统计的各种应用。本书力求使用较少的数学知识,强调概率统计概在的阐释,并注意举例的多样性。《BR》