这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
由美国当代著名统计学家L.沃塞曼所著的《统计学完伞教程》是一本几乎包含了统计学领域全部知识的优秀教材,本书除了介绍传统数理统计学的全部内容以外,还包含了Bootstrap方法(白助法)、独立性推断、因果推断、图模型、非参数同归、正交函数光滑法、分类、统计学理论及数据挖掘等统计学领域的新方法和技术.本书不但注重概率论与数理统计基本理论的阐述,同时还强调数据分析能力的培养.本书中含有大量的实例以帮助广大读者快速掌握使用R软件进行统计数据分析。
本书源自的哈佛统计学讲座,介绍了帮助读者理解统计方法、随机性和不确定性的基本语言和工具,并列举了多种多样的应用实例,内容涉及偶然性、悖论、谷歌的网页排名算法(PageRank)及马尔可夫链蒙特卡罗方法(MCMC)等。本书还探讨了概率论在诸如基因学、医学、计算机科学和信息科学等领域的应用。全书共分13章,分别介绍了概率与计数、条件概率、随机变量及其分布、期望、连续型随机变量、矩、联合分布、变换、条件期望、不等式与极限定理、马尔可夫链、马尔可夫链蒙特卡罗方法、泊松过程等内容。用容易理解的方式来呈现内容,用实例来揭示统计学中基本分布之间的联系,并通过条件化将复杂的问题归约为易于掌控的若干小问题。书中还包含了很多直观的解释、图示和实践问题。每一章的结尾部分都给出了如何利用R来完成相关模拟和计算的方法。
概率论与数理统计是从数量方面研究随机现象的统计规律的一门课程,它是高等院校经济管理类专业的基础课之一。它是在经济管理、质量控制、数量经济学、信息论、预测理论和*理论中有着广泛应用的基础课程。 本书系上海财经大学数学学院编写的经济数学系列教材之一。全书共十章,内容包括事件与概率、条件概率与独立性、随机变量及其分布、随机向量及其分布、数字特征与特征函数、极限定理、统计量与抽样分布、参数估计、假设检验、线性统计推断等。每章均配有不同难易程度的适量习题,书末附有习题答案或提示,供读者参考。 本书坚持理论联系实际,取材新颖,注重科学性、现实性、趣味性,努力使学生从教材中深切地感知概率论与数理统计知识在实际工作与生活中的广泛应用。本书在编写中力求内容完整,做到重点突出、联系实际、由浅入深、通俗
本书被公认为是一套概率论方面的标准经典教科书,供高年级大学生和研究生使用,同时也是概率论和统计学方面研究人员经常使用的参考书。本书把概率论建立在严格的逻辑基础上,理论体系完整。在第4版中增加了距离空间测定、随机游动、布朗运动及不变原理四部分,后两部分尤为精彩。全书除引言外,两卷共分五部分,第1卷包括三部分,涉及概率论的基本概念和数学手段。读者对象:数学及相关专业的研究生。
本书以MATLAB R2015b为平台进行编写,以概率与数理统计学为主线、MATLAB为辅助工具有机结合进行讲述,实用性非常强,实现的方法也很多,主要包括MATLAB计算基础、概率与数理统计学基础、统计估计、假设检验、方差分析、回归分析、正交实验、主成分分析、因子分析、判别分析和聚类分析等内容。本书侧重于概率与数理统计学的MATLAB实现,并精选大量的概率与数理统计应用实例,通过实例分析来求解,做到理论与实践相结合。本书可作为工科硕士研究生 应用概率与数理统计学 课程的基础教材、本科生相关专业的专业基础教材或实验教材,也可作为科研人员、工程技术人员的工具书或理论参考书。
本书系统讲述统计中多元分布的基本理论和常用的多元数据分析方法。多元分布理论包括Wishart分布、T2分布、A分布、多元Beta分布、多元正态的参数估计和假设检验及一般多元分布的参数估计和假设检验理论。多元数据分析方法包括多元线性回归模型、判别分析、主成分分析、因子分析、相应分析、聚类分析、典型相关分析和多维标度法。既强调作为一个学科分支的理论系统性,对一些基本定理给出了必要而简明的数学推导,又注重数据分析方法的多样性,对各方法从背景、数学工具的使用、计算步骤到应用技巧及各种方法之间的联系,都有较详细的阐述,包括近期的一些新发展。书中给出一些有启发性的实例和习题。书末附录给出一些代数补充知识。
本书被公认为是一套概率论方面的标准经典教科书,供高年级大学生和研究生使用,同时也是概率论和统计学方面研究人员经常使用的参考书。本书把概率论建立在严格的逻辑基础上,理论体系完整。第2卷包括两部分内容,涉及条件运算及独立随机变量和极限性质的相依性、二阶随机函数、随机分析的基本概念以及鞅、可分解性、随机函数的马尔可夫型等。读者对象:数学及相关专业的研究生。
本书章节安排与 概率论与数理统计 普通教科书中的章节安排基本平行.书中每章的各节有内容要点与评注、典型例题以及习题;各章都设有专题讨论,每个专题以典型例题解析的方式阐述了围绕该专题的解题方法与技巧,每章末附有补充题,是在前各专题的引领下,对知识点融会贯通、综合运用的体现,它包含客观题和主观题,客观题的设置意在考查对该章知识点全面而深入的理解,主观题的设置意在考查对该章知识点的综合运用能力与掌握.对于典型例题的讲解处理得非常细致,试图营造一对一辅导的氛围,以帮助读者理解和掌握.对于专题的处理,力图理清知识点之间的脉络与联系,实现对知识的系统理解.本书可作为学生学习 概率论与数理统计 课程时的同步学习辅导材料,也可作为考研复习的辅导教材.
《基于回归视野的统计学习》作者是宾夕法尼亚大学数理统计系教授,研究领域广泛,在社会科学和自然科学均有很深的造诣。本书主要阐述统计学习的应用知识,各章还有实际应用实例,可作为统计、社会科学和生命科学等相关领域的研究生和科研人员的参考书。
随着计算机、互联网等信息技术的发展,马尔可夫链蒙特卡罗(MCMC)模拟技术使贝叶斯统计方法得以应用于许多领域的复杂问题.《BR》本书在介绍常用MCMC算法的基础上,着重介绍计算贝叶斯后验估计的MCMC方法和新发展的贝叶斯随机搜索模型选择方法,特别是MCMC方法在贝叶斯数据分析中的应用.为了便于读者掌握MCMC方法,书中提供了大量的数据分析案例及相应的算法程序、图表和模拟分析结果.《BR》
近来,被称为“数据科学家”的研究者备受关注,充分运用数据进行分析,变得越 来越重要。这种活用数据的基础便是“统计与概率”。《BR》统计与概率,不仅对于研究者,对于生活在现代社会的所有人来说都是可以在现实 生活中发挥重要作用的知识。在日常生活中,正确解读数据,从而进行合理的判断,也 是依靠概率和统计的思考方法。《BR》在本书中,以我们身边的话题作为案例,介绍以统计与概率为基础的重要数学方法, 并对于因人工智能的蓬勃发展而备受瞩目的“贝叶斯统计”,也介绍其思考方法与应用实 例。此外,本书还对概率论起源于 17 世纪欧洲的博彩问题,以及“统计大师”汉斯·罗 斯林博士的访谈、随机和随机数的深奥的问题等进行了介绍,希望与读者一同洞悉统计 与概率的本质。