本书系统介绍锥约束优化的**性理论与增广Lagrange方法,主要内容包括变分分析的相关基础、约束集合的切锥与二阶切集、对偶理论、非线性锥约束优化的一阶**性条件和二阶**性条件、三类重要的锥约束优化的**性条件、凸规划的内点算法以及非凸半定规划的增广Lagrange方法的收敛速度估计等.
本书系统地介绍运筹学中的主要内容,重点陈述应用最为广泛的线性规划、对偶理论、整数规划、非线性规划、动态规划、图与网络、决策分析、博弈论、库存论、排队论与模拟等定量分析的理论和方法。阅读本书只需微积分、线性代数与概率统计的一些基本知识。本书是教学改革项目“基于信息技术平台的运筹学立体化教材”的成果,配备有完整和立体化教学包,包括教师手册、多媒体课件、习题案例答案、补充习题及其答案、教学案例库、考试测评系统、在线支持等。
整数规划是运筹学与最优化理论的重要分支之一.整数规划模型、理论和算法在管理科学、经济、金融工程、工业管理和其他领域有着广泛的应用.本书主要介绍经典的线性整数规划理论和算法,同时简单介绍近年发展起来的非线性整数规划理论.主要内容包括:线性和非线性整数规划问题和模型、线性规划基础、全单模矩阵、图论和网络流问题、算法复杂性理论、分校定界算法、割平面方法、多面体和有效不等式理论、整数规划对偶理论、0-1二次整数规划与SDP松弛、0-1多项式整数规划等.
本书介绍了线性规划、对偶理论、整数规划、目标规划、运输与指派问题、网络模型、网络计划、动态规划、排队论、存储论、决策论、多属性决策与博弈论等运筹学主要分支的基本理论、基本概念和计算方法,用较多的例题介
本书系统介绍变分分析的基本理论,讨论变分分析在最优化理论与算法分析中所起的基础性作用.变分分析部分包括宇窗空间与锥、集值映射、集合的变分几何、函数的广义微分、单值函数的Lipschitz 性质和集值映射的Aubin 性质、隐函数定理与系统稳定性.最优化理论部分包括最优性理论(含有Lipschitz 函数优化的Clarke 乘子原则以及均衡约束数学规划问题的最优性条件)、非线性规划的扰动分析、二阶锥的变分分析与二阶锥约束优化问题的扰动分析,以及半正定矩阵锥的变分分析与半定规划问题的扰动分析.最优化的算法部分包括Newton 方法和邻近点方法,邻近点方法部分介绍Moreau 包络、等式约束的非线性规划问题、非线性二阶锥约束优化问题与非线性半定规划问题的增广Lagrange 方法的收敛速度等.
本书系统介绍**化问题的稳定性分析的基本理论,讨论稳定性理论在具体优化问题中的应用,基本理论部分包括变分分析的相关素材、对偶理论、集值映射的稳定性概念及相互关系、稳定性质和微分准则、线性系统与非线性系统的稳定性.应用部分包括凸优化问题的稳定性分析、一般优化问题的稳定性分析及三类锥规刘(非线性规划、二阶锥约束优化及半定优化)问题的稳定性分析,其中三类锥规划问题的稳定性分析分别涉及**性条件、Jacobian**性条件、强二阶充分性条件、稳定性的等价刻画及孤立平稳性等内容.
《运筹学(第四版)》在第三版的基础上修订完善而成,主要内容有线性规划、整数线性规划、非线性规划、动态规划、图与网络分析、网络计划技术、排队论、决策分析、对策论等。 第四版继续保持了前三版的厚理论、宽口径、理论联系实际的特点和精炼、严谨的风格,第三版的绪论精炼为运筹学简介,作为引言,并结合当前的研究热点——复杂网络及大数据分析,在“图与网络分析”中增加了“复杂网络简介”,在“对策论”中增加了“网络对策”。此外对部分章节的内容和习题根据需要进行了增删或修改。习题分为(A),(B)两部分,难度有所差异,可供读者选择。教材配套的数字课程包含各章相关的应用实例和程序。 《运筹学(第四版)》可作为数学与应用数学、信息与计算科学、金融数学等专业的运筹学课程教材,也可作为管理、系统工程等
《运筹学(第四版)》在第三版的基础上修订完善而成,主要内容有线性规划、整数线性规划、非线性规划、动态规划、图与网络分析、网络计划技术、排队论、决策分析、对策论等。 第四版继续保持了前三版的厚理论、宽口径、理论联系实际的特点和精炼、严谨的风格,第三版的绪论精炼为运筹学简介,作为引言,并结合当前的研究热点——复杂网络及大数据分析,在“图与网络分析”中增加了“复杂网络简介”,在“对策论”中增加了“网络对策”。此外对部分章节的内容和习题根据需要进行了增删或修改。习题分为(A),(B)两部分,难度有所差异,可供读者选择。教材配套的数字课程包含各章相关的应用实例和程序。 《运筹学(第四版)》可作为数学与应用数学、信息与计算科学、金融数学等专业的运筹学课程教材,也可作为管理、系统工程等
运筹学的思想和方法用精简的语言来描述,就是建立某个问题的数学模型并求其“zui大值”或“zui小值”。在经济、管理以及各种工程技术问题中,这样的问题比比皆是。但是,运筹学的模型和方法在实际应用时大多数都是计算非常烦琐的,如果不与计算机技术相结合,则较难将其应用到解决实际问题中去。MATLAB是当前很好的科学计算语言之一,在本书中,一方面继续保留相关理论和方法的描述;另一方面则对书中所涉及的所有算法给出相应的MATLAB程序。 本书将运筹学的基本内容按照数学模型分成线性模型、非线性模型和随机模型分别加以叙述。其中,线性模型包括线性规划、运输问题、目标规划、整数规划、图与网络流规划等;非线性模型包括无约束非线性规划、约束非线性规划以及存储论中的非线性问题等;随机模型主要包括排队论。 本书可
全局优化问题一直是**化领域的老大难问题,备受关注。本书首先介绍了非凸全局优化问题的研究进展,然后从分支方法、定界理论、算法设计及相关技术等方面详细论述了非凸全局优化问题的分支定界算法。全书主要内容如下:全局优化方法的研究现状,分支定界算法的理论基础、分支方法、定界技巧及相关概念,二次规划、线性多乘积规划、广义线性多乘积规划、广义几何规划、广义线性比式和、二次约束二次比式和、广义多项式比式和、一般非线性比式和等问题的分支定界算法。