本书系统地介绍运筹学中的主要内容,重点陈述应用最为广泛的线性规划、对偶理论、整数规划、非线性规划、动态规划、图与网络、决策分析、博弈论、库存论、排队论与模拟等定量分析的理论和方法。阅读本书只需微积分、线性代数与概率统计的一些基本知识。本书是教学改革项目“基于信息技术平台的运筹学立体化教材”的成果,配备有完整和立体化教学包,包括教师手册、多媒体课件、习题案例答案、补充习题及其答案、教学案例库、考试测评系统、在线支持等。
本书系统介绍了运筹学的基本理论与应用方法,内容涵盖线性规划、对偶理论、整数规划、目标规划、运输问题、网络模型及决策分析等,相关部分都有案例分析及WinQSB软件介绍,同时每章都附有课后习题和参考答案,便于读者进一步学习。本书可用做经济管理类专业本科生教材,也可作为其他相关专业的参考用书。
本书介绍了凸优化中的主要复杂性定理及其相应的算法。从黑箱优化的基本理论出发,内容材料是朝着结构优化和随机优化的新进展。我们对黑箱优化的介绍,深受Nesterov的开创性著作和Nemirovski讲稿的影响,包括对切割平面方法的分析,以及(加速)梯度下降方案。我们还特别关注非欧几里德的情况(相关算法包括Frank Wolfe、镜像下降和对偶平均法),并讨论它们在机器中的相关性学习。我们慢慢的介绍了FISTA(优化一个光滑项和一个简单的非光滑项的和)、鞍点镜像代理(Nemirovski平滑替代Nesterov的光滑)和一个对内点方法的简明描述。在随机优化中,我们讨论了随机梯度下降、小批量、随机坐标下降和次线性算法。我们还简单地讨论了组合问题的凸松弛和随机性对取整(四舍五入)解的使用,以及基于随机游动的方法。
本书介绍了凸优化中的主要复杂性定理及其相应的算法。从黑箱优化的基本理论出发,内容材料是朝着结构优化和随机优化的新进展。我们对黑箱优化的介绍,深受Nesterov的开创性著作和Nemirovski讲稿的影响,包括对切割平面方法的分析,以及(加速)梯度下降方案。我们还特别关注非欧几里德的情况(相关算法包括Frank Wolfe、镜像下降和对偶平均法),并讨论它们在机器中的相关性学习。我们慢慢的介绍了FISTA(优化一个光滑项和一个简单的非光滑项的和)、鞍点镜像代理(Nemirovski平滑替代Nesterov的光滑)和一个对内点方法的简明描述。在随机优化中,我们讨论了随机梯度下降、小批量、随机坐标下降和次线性算法。我们还简单地讨论了组合问题的凸松弛和随机性对取整(四舍五入)解的使用,以及基于随机游动的方法。
本书介绍了凸优化中的主要复杂性定理及其相应的算法。从黑箱优化的基本理论出发,内容材料是朝着结构优化和随机优化的新进展。我们对黑箱优化的介绍,深受Nesterov的开创性著作和Nemirovski讲稿的影响,包括对切割平面方法的分析,以及(加速)梯度下降方案。我们还特别关注非欧几里德的情况(相关算法包括Frank Wolfe、镜像下降和对偶平均法),并讨论它们在机器中的相关性学习。我们慢慢的介绍了FISTA(优化一个光滑项和一个简单的非光滑项的和)、鞍点镜像代理(Nemirovski平滑替代Nesterov的光滑)和一个对内点方法的简明描述。在随机优化中,我们讨论了随机梯度下降、小批量、随机坐标下降和次线性算法。我们还简单地讨论了组合问题的凸松弛和随机性对取整(四舍五入)解的使用,以及基于随机游动的方法。
本书系统介绍了运筹学的基本理论与应用方法,内容涵盖线性规划、对偶理论、整数规划、目标规划、运输问题、网络模型及决策分析等,相关部分都有案例分析及WinQSB软件介绍,同时每章都附有课后习题和参考答案,便于读者进一步学习。 本书可用做经济管理类专业本科生教材,也可作为其他相关专业的参考用书。
本书介绍了凸优化中的主要复杂性定理及其相应的算法。从黑箱优化的基本理论出发,内容材料是朝着结构优化和随机优化的新进展。我们对黑箱优化的介绍,深受Nesterov的开创性著作和Nemirovski讲稿的影响,包括对切割平面方法的分析,以及(加速)梯度下降方案。我们还特别关注非欧几里德的情况(相关算法包括Frank Wolfe、镜像下降和对偶平均法),并讨论它们在机器中的相关性学习。我们慢慢的介绍了FISTA(优化一个光滑项和一个简单的非光滑项的和)、鞍点镜像代理(Nemirovski平滑替代Nesterov的光滑)和一个对内点方法的简明描述。在随机优化中,我们讨论了随机梯度下降、小批量、随机坐标下降和次线性算法。我们还简单地讨论了组合问题的凸松弛和随机性对取整(四舍五入)解的使用,以及基于随机游动的方法。
本书系统介绍了运筹学的基本理论与应用方法,内容涵盖线性规划、对偶理论、整数规划、目标规划、运输问题、网络模型及决策分析等,相关部分都有案例分析及WinQSB软件介绍,同时每章都附有课后习题和参考答案,便于读者进一步学习。本书可用做经济管理类专业本科生教材,也可作为其他相关专业的参考用书。
“高等运筹学”是系统科学、应用数学、管理科学与工程、信息科学等众多学科博士、硕士研究生的一门必修的应用基础课程. 通过本书的学习, 使学生比较系统地掌握运筹学的基本理论, 了解前沿领域与某些应用背景, 培养学生应用课程所学知识解决现实工程和管理中碰到的最优化、平衡、综合评价、决策分析等问题, 使学生能够根据具体的应用问题建立运筹学模型, 提高学生的理论分析能力、数学建模及求解能力. 本书是在本科“运筹学”课程基础上, 提高理论起点, 以泛函分析、凸分析、高等概率统计为数学基础, 结合经济学、金融学、风险管理、多目标决策、多因素评价、计算机网络、无线通信等相关学科分支的应用背景, 全面提高学生的理论基础和建模水平. 内容主要包括Hilbert空间上的最优化理论、随机决策基础、效用理论、多准则决策与群决策、博弈论和复杂