本书系统介绍锥约束优化的**性理论与增广Lagrange方法,主要内容包括变分分析的相关基础、约束集合的切锥与二阶切集、对偶理论、非线性锥约束优化的一阶**性条件和二阶**性条件、三类重要的锥约束优化的**性条件、凸规划的内点算法以及非凸半定规划的增广Lagrange方法的收敛速度估计等.
整数规划是运筹学与最优化理论的重要分支之一.整数规划模型、理论和算法在管理科学、经济、金融工程、工业管理和其他领域有着广泛的应用.本书主要介绍经典的线性整数规划理论和算法,同时简单介绍近年发展起来的非线性整数规划理论.主要内容包括:线性和非线性整数规划问题和模型、线性规划基础、全单模矩阵、图论和网络流问题、算法复杂性理论、分校定界算法、割平面方法、多面体和有效不等式理论、整数规划对偶理论、0-1二次整数规划与SDP松弛、0-1多项式整数规划等.
本书系统介绍**化问题的稳定性分析的基本理论,讨论稳定性理论在具体优化问题中的应用,基本理论部分包括变分分析的相关素材、对偶理论、集值映射的稳定性概念及相互关系、稳定性质和微分准则、线性系统与非线性系统的稳定性.应用部分包括凸优化问题的稳定性分析、一般优化问题的稳定性分析及三类锥规刘(非线性规划、二阶锥约束优化及半定优化)问题的稳定性分析,其中三类锥规划问题的稳定性分析分别涉及**性条件、Jacobian**性条件、强二阶充分性条件、稳定性的等价刻画及孤立平稳性等内容.
\"本书共16章,内容包括绪论、线性规划(模型及图解法、单纯形法、对偶模型、灵敏度分析、线性规划的应用)、运输问题、整数线性规划、目标规划、动态规划、图与网络分析、网络计划技术、决策分析、对策论、排队论、存储论。各章按照“问题—模型—求解—应用”这样的结构组织编写,旨在突出运筹学定量管理的原理和方法。本书对基本概念、基本理论、基本算法做了系统的介绍,对模型求解,既重视基本算法的介绍,又强化计算机软件包的使用,通过例题介绍了运筹学在经济管理、金融工程、工商管理及工程优化设计等领域中的应用。各章后均附有习题,以帮助学生复习基本知识和检查学习效果。本书可作为高等院校经济管理类和理工类相关专业高年级本科生、研究生、MBA的教材。\"
本书介绍了凸优化中的主要复杂性定理及其相应的算法。从黑箱优化的基本理论出发,内容材料是朝着结构优化和随机优化的新进展。我们对黑箱优化的介绍,深受Nesterov的开创性著作和Nemirovski讲稿的影响,包括对切割平面方法的分析,以及(加速)梯度下降方案。我们还特别关注非欧几里德的情况(相关算法包括Frank Wolfe、镜像下降和对偶平均法),并讨论它们在机器中的相关性学习。我们慢慢的介绍了FISTA(优化一个光滑项和一个简单的非光滑项的和)、鞍点镜像代理(Nemirovski平滑替代Nesterov的光滑)和一个对内点方法的简明描述。在随机优化中,我们讨论了随机梯度下降、小批量、随机坐标下降和次线性算法。我们还简单地讨论了组合问题的凸松弛和随机性对取整(四舍五入)解的使用,以及基于随机游动的方法。