本书系统介绍锥约束优化的**性理论与增广Lagrange方法,主要内容包括变分分析的相关基础、约束集合的切锥与二阶切集、对偶理论、非线性锥约束优化的一阶**性条件和二阶**性条件、三类重要的锥约束优化的**性条件、凸规划的内点算法以及非凸半定规划的增广Lagrange方法的收敛速度估计等.
本书系统地介绍运筹学中的主要内容,重点陈述应用最为广泛的线性规划、对偶理论、整数规划、非线性规划、动态规划、图与网络、决策分析、博弈论、库存论、排队论与模拟等定量分析的理论和方法。阅读本书只需微积分、线性代数与概率统计的一些基本知识。本书是教学改革项目“基于信息技术平台的运筹学立体化教材”的成果,配备有完整和立体化教学包,包括教师手册、多媒体课件、习题案例答案、补充习题及其答案、教学案例库、考试测评系统、在线支持等。
整数规划是运筹学与最优化理论的重要分支之一.整数规划模型、理论和算法在管理科学、经济、金融工程、工业管理和其他领域有着广泛的应用.本书主要介绍经典的线性整数规划理论和算法,同时简单介绍近年发展起来的非线性整数规划理论.主要内容包括:线性和非线性整数规划问题和模型、线性规划基础、全单模矩阵、图论和网络流问题、算法复杂性理论、分校定界算法、割平面方法、多面体和有效不等式理论、整数规划对偶理论、0-1二次整数规划与SDP松弛、0-1多项式整数规划等.
“高等运筹学”是系统科学、应用数学、管理科学与工程、信息科学等众多学科博士、硕士研究生的一门必修的应用基础课程. 通过本书的学习, 使学生比较系统地掌握运筹学的基本理论, 了解前沿领域与某些应用背景, 培养学生应用课程所学知识解决现实工程和管理中碰到的最优化、平衡、综合评价、决策分析等问题, 使学生能够根据具体的应用问题建立运筹学模型, 提高学生的理论分析能力、数学建模及求解能力. 本书是在本科“运筹学”课程基础上, 提高理论起点, 以泛函分析、凸分析、高等概率统计为数学基础, 结合经济学、金融学、风险管理、多目标决策、多因素评价、计算机网络、无线通信等相关学科分支的应用背景, 全面提高学生的理论基础和建模水平. 内容主要包括Hilbert空间上的最优化理论、随机决策基础、效用理论、多准则决策与群决策、博弈论和复杂
本书由国内著名高校长期从事运筹学教学的教师集体编写而成,其内容紧密结合经济管理类专业的特点。本书系统地讲述了线性规划、目标规划、整数规划、非线性规划、动态规划、图与网络分析、排队论、存储论、对策论、决策论的基本概念、理论、方法和模型,以及数据包络分析、运筹学问题的启发式算法等。各章后均附有习题,附录中给出了习题参考答案与提示,以帮助复习基本知识和检查学习效果。第5版根据运筹学近年发展作了更新,增加了运筹学应用软件的介绍,并利用互联网和数字平台增加了拓展内容、即练即测题和自我测试题及答案。 本书可作为高等院校经济管理类和理工类等专业本科生、研究生的教材,也可作为工程技术人员和经济管理干部进一步提高管理理论水平的自学参考书。
本教材充分考虑到运筹学的学科特点,问题都来源于当今信息时代的实际案例,并上升到理性,再回到实践中去,解决实践中的问题。积极尝试运用新的思维和科研成果改进教材内容。根据运筹学课程在相关专业能力体系中的作用,希望本教材能够在知识维度提供优化理论和方法,在能力维度能够培养学生解决实际优化问题的能力、推理和分析能力、定量分析问题解决问题的能力、系统分析问题的能力;在态度维度能够更理性的认识问题,学会用数学的语言来描述一个实际问题。本书适合作为普通高等院校开设“运筹学”课程的教材或参考书。
本书是学习掌握运筹学理论和方法的重要辅助教材,也是教师备课、学生自学运筹学以及研究生入学考试的常备参考资料。本书分为习题、习题答案、案例分析与讨论三部分,内容含线性规划与单纯形法、对偶理论与灵敏度分析、运输问题、目标规划、整数规划、非线性规划、动态规划、图与网络分析、网络计划与图解评审法、排队论、存储论、对策论、决策论共13章,740余题,分别给出答案、证明或题解; 25个应用案例都有详细的分析讨论。同第4版相比,本次修改订增加了10个运筹学应用案例和130多道习题,主要选自近年来硕士生和博士生入学试题以及根据国外教材有关内容进行的改编,从而使习题集的题型更广泛,内容更丰富,更具启发性。
本书作为科普读物侧重以初等方式概要介绍运筹学中的一些重要内容,主要包括:线性规划、运输问题、整数规划、工件排序、黄金分割法、图论、zui短路问题、旅行商问题、决策论、对策论等基本的理论和方法。以不超过高中数学的程度,通过问题导向与算例示范,循序渐进地讲解运筹学的主要思想、基本概念与典型方法,兼顾趣味性和专业性,力求以轻松的方式让读者进入运筹学的优化之门。 本书可供大、中学生以及社会各层次人员作为科普书阅读或自学使用,亦可供相关院校用作选修课教材或课外读物。 本书另有作者自行开发的运筹学自由软件,可在相关网站免费下载使用。
运筹学的思想和方法用精简的语言来描述,就是建立某个问题的数学模型并求其 *值 或 小值 。在经济、管理以及各种工程技术问题中,这样的问题比比皆是。但是,运筹学的模型和方法在实际应用时大多数都是计算非常烦琐的,如果不与计算机技术相结合,则较难将其应用到解决实际问题中去。MATLAB 是当前好的科学计算语言之一,在本书中,一方面继续保留相关理论和方法的描述;另一方面则对书中所涉及的所有算法给出相应的MATLAB 程序。本书将运筹学的基本内容按照数学模型分成线性模型、非线性模型和*模型分别加以叙述。其中,线性模型包括线性规划、运输问题、目标规划、整数规划、图与网络流规划等;非线性模型包括无约束非线性规划、约束非线性规划以及存储论中的非线性问题等;*模型主要包括排队论。本书可作为应用数学、经济、管理类以及工程