本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematica在线性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书对扩展有限单元法的理论、应用和程序进行了较为详尽的论述。全书共分9章,包括4部分内容。第1部分(第1章~第3章)系统地综述扩展有限单元法理论的研究进展和主要应用,简述扩展有限单元法理论的基础知识(水平集法和线弹性断裂力学基础) ;第2部分(第4章)详细地论述扩展有限单元法的基本理论;第3部分(第5章~第8 章)详细介绍扩展有限单元法在教聚裂纹扩展、非均质问题、动态断裂问题和剪切带演化领域中的应用;第4部分(第9章)介绍扩展有限单元法的程序设计,给出主要的程序代码,将有利于读者尽快掌握扩展有限单元法的程序实现,并在此基础上应用该方法解决工程实际问题。
无
本书系统地论述了有限元方法的数学基础理论。本书以椭圆偏微分方程的边值问题为例,介绍了协调有限元方法以及非协调等非标准有限元方法的数学描述、收敛条件和性质、有限元解的先验和后验误差估计以及有限元空间的基本性质,其中包括作者多年来的部分研究成果。
无
本书首先阐述了网络状态认知和流量控制的必要性及常用方法,然后介绍了模糊逻辑理论和方法、自然计算模型和方法, 并将模糊综合评判理论和自然计算理论应用到网络状态认知和流量控制领域,后给出了几个将自然计算应用于网络状态认知和流量控制的典型案例。本书可作为高等学校计算机和网络通信相关专业高年级本科生、研究生的参考书,也可供相关领域工程技术人员参考。
本书参考国内外相关文献,结合*关于“数值计算方法”课程的基本要求,从基本概念、基本理论和方法系统介绍数值分析与计算的相关内容和观点.本书既注重理论的严谨性,又注重方法的实用性,重点阐明数值分析和各种算法构造的基本思想与原理.其主要内容包括:绪论、线性方程组的直接解法、解线性方程组的迭代法、矩阵的特征值和特征向量计算、插值法、曲线拟合、数值微分与数值积分、非线性方程和方程组的数值解法、常微分方程数值解法、瞬时扩散方程的差分解法简介和Matlab软件介绍等.全书重点突出,各篇章相互衔接,每章均附有应用实例与习题.
本书系统地介绍了计算几何中的基本概念、求解诸多问题的算法及复杂性分析,概括了求解几何问题所特有的许多思想方法、几何结构与数据结构。全书共分11章,包括: 预备知识,几何查找(检索),多边形,凸壳及其应用,Voronoi图、三角剖分及其应用,交与并及其应用,多边形的获取及相关问题,几何体的划分与等分,路径与回路,几何拓扑网络设计,图形学习、推理及判定等。本书可作为高等院校计算机、自动化等专业研究生或本科高年级学生的教材或教学参考书,也可供软件开发人员、相关专业科技工作者参考。
本书系统介绍ZI数据和相关ZI模型的统计推断原理、方法和应用。内容主要包括:ZI模型参数的极大似然估计、Bayes估计、基于经典方法的影响诊断、基于K-L距离的Bayes影响诊断、ZI参数和散度参数的假设检验,ZI随机效应模型参数的极大似然和Bayes估计、基于经典方法的影响诊断、基于K-L距离的Bayes影响诊断、回归系数和散度参数的假设检验、方差成分检验,ZI模型及相应的随机效应模型中与均值函数有关的协变量函数形式和联系函数形式的误判检验等。
本书阐述自适应Fourier分解(AdaptiveFourierDecomposition,AFD)及单分量函数论的数学理论及应用。按照理论发展的顺序,第3章单分量函数论应该在第2章AFD理论之先的,后者作为单分量函数分解的特殊情况。尽管如此,我们选择优先讲述AFD的理论。第3章通过单复变量几何分析的研究建立了单分量函数的理论。第4章讲述单分量函数论对数字信号处理的奠基性的应用,其中包括由AFD引出的Dirac型时间-频率分布的理论,以及对经典Heisenberg型测不准原理的改进。在第5章中,应用调和分析及单复变量分析方法,我们发展了前移及后移不变子空间的理论,并将该研究用于频带保持、相位重构、以及Bedrosian方程式的解。AFD与单分量函数的思想贯穿一维单复变结构下的两个典型流型,即圆与直线(第2章);高维两种复结构(Clifford代数及多复变量)之下的Euclid空间、实球壳以及多环面
本书以自封闭的形式系统介绍了线性不适定问题的正则化求解方法,以及在数学物理反问题研究中的一些应用。主要内容包括:不适定问题的基本概念和特点,研究不适定问题需要的基本数学工具和方法,求解不适定问题的标准的正则化方法及近年来的新发展,以及正则化方法在逆时热传导、数值微分、逆散射等领域中的应用。本书的内容包含了作者和其他学者近几年来的有关工作。
兰德尔 勒维克*朱华君译的《守恒律方程的数 值方法》着重介绍守恒律方程的数学理论和数值方法 。守恒律方程的数学理论部分从标量守恒律到方程组 的守恒律,从线性对流方程到非线性方程的顺序由简 到难地给出了守恒律方程的特性介绍。数值方法方面 介绍了数值方法的特性,包括收敛性,稳定性和CFL 条件等,介绍了经典的Godunov格式,近似Riemann解 算子和非线性稳定性,还介绍了高分辨格式,包括限 制器,人工粘性,TVD格式和ENO格式等内容。
本书论述了解非线性方程组的基本理论和方法,着重介绍:Newton法、单纯形算法、同伦延招法、区间迭代法,以及计算机数学库中常用的新算法,还介绍了方法的收敛性定理和方程解的存在**位,并且给出了有实际应用价值的、效果好的算法步骤和数值例题。
本书是作者JanS.Hesthaven和TimWarburton多年研究节点间断Galerkin方法的结晶.书中详细介绍了算法的构造、分析及其多方面的应用.全书共分10章和3个附录.第1章是引言部分,第2章至第4章主要讨论线性波问题的一些基本性质,第5章分析变系数非线性守恒问题,第6章讨论推广求解二维问题,第7章至第9章主要讨论如何应用DG-FEM求解高阶混合问题,第10章给读者提供一个三维空间简单试验和算法实施平台,3个附录讨论的算法和程序将应用于全书始终.
本书详细介绍了常用的数值计算方法,分上、下两册。上册包括误差分析初步,函数插值逼近,数值积分,解非线性方程的数值方法,解线性方程组的直接方法。下册包括解线性方程组的迭代法,线性*小二乘问题,数据拟合,矩阵特征值问题,解非线性方程组的数值方法,常微分方程初值问题和边值问题的数值解法,函数逼近等。本书内容丰富,并且绝大多数算法用伪程序给出,强调数值方法在计算机上的实现。
《 数学中的小问题大定理 丛书(第2辑):拉格朗日乘子定理》从一道2005年全国高中联赛试题的高等数学解法谈起,详细介绍了拉格朗日乘子定理的相关知识及应用,《 数学中的小问题大定理 丛书(第2辑):拉格朗日乘子定理》共9章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。
本书是经典的离散数学教材,为全球多所大学广为采用。本书全面而系统地介绍了离散数学的理论和方法,内容涉及逻辑和证明,集合、函数、序列、求和与矩阵,计数,关系,图,树,布尔代数。全书取材广泛,除包括定义、定理的严格陈述外,还配备大量的实例和图表说明、各种练习和题目。第7版在前六版的基础上做了大量的改进,使其成为更有效的教学工具。本书可作为高等院校数学、计算机科学和计算机工程等专业的教材或参考书。