数据是什么?如何应用数据?如何把数据变成更有价值的东西?本书主要适合刚开始使用数据的读者,能让他们对数据的含义、价值及用途有清晰的认识和了解,本书目的是介绍数据的相关知识,同时鼓励人们参与到日益增多的与数据有关的对话中。 本书通过介绍简单数据相关知识,即从一个总体目标、两种思维系统、三大应用领域、四种数据尺度、五种数据分析方法、六种数据展现方式、七种数据活动、八个提前问的问题分别展开阐释数据和分析的方法和思维方式。
Apache Flink项目的资深贡献者Fabian Hueske和Vasiliki Kalavri展示了如何使用Flink DataStream API实现可伸缩的流式应用,以及怎样在业务环境中持续运行和维护这些应用。流处理的理想应用场景有很多,包括低延迟ETL、流式分析、实时仪表盘以及欺诈检测、异常检测和报警。你可以在任意类型的持续数据(包括用户交互、金融交易和物联网等数据)生成后,立即对它们进行处理。本书主要内容包括: 了解有关分布式状态化流处理的概念和挑战。 探索Flink的系统架构,包括事件时间处理模式和容错模型。 理解DataStream API的基础知识和构成要素,包括基于时间和有状态的算子。 以精确一次的一致性读写外部系统。 部署和配置Flink集群。 对持续运行的流式应用进行运维。
本书对可视化技术、交互技术以及数据分析方法进行了系统和全面的讲解。介绍了交互式可视化数据分析解决方案的设计标准,论述了设计中的影响因素以及工作流程的检验方法。读者可以从中了解可视化编码的基础知识,以及用于多元数据、时间数据、地理空间数据和图形数据等方面的众多可视化技术。 书中专门用一章的内容来介绍与可视化效果互动的常规概念,并且利用图示来说明现代交互技术如何推动可视化数据分析的发展。针对如今庞大而复杂的数据,本书涵盖了自动化分析计算支持可视化数据分析的相关内容,另外还介绍了多屏幕环境下的高级可视化概念、数据分析过程中的用户指南以及渐进式可视化数据分析等技术。 作者用简洁明了的术语以自上而下的视角解读了交互式可视化数据分析。众多真实案例和丰富的插图将使学生、本领域专家、数据密
数据科学伦理是关于人们在进行数据科学方面的行为的道德规范。到目前为止,数据科学主要应用于企业和社会并产生了积极成果。 然而,就像任何技术一样,数据科学也带来了一些负面后果:隐私侵犯的增加,对敏感群体的数据驱动的歧视以及使用不可解释的复杂模型做出决策。 没有哪个数据科学家和业务经理是天生不道德的,只是他们没有接受过培训来考虑他们在工作中的伦理问题 本书旨在填补这个越来越重要的空白和解释不同的概念和技术,帮助读者理解从k-匿名和差别隐私到同态加密和零知识证明等技术已可以解决隐私侵犯问题,消除敏感群体歧视和提供各种可解释的人工智能。 现实生活中的警世故事进一步说明了数据科学伦理的重要性和潜在影响,包括种族主义机器人的故事、搜索审查和人脸识别等。本书中穿插着结构化的练习,提供假设的场景和
如今,推荐算法已经普遍应用于在线各个领域和场景,越来越多的商品、服务、用户通过推荐算法高效地连接彼此,每个人都享受到更加个性化的内容和服务。推荐已深刻地改变了我们与世界连接的方式。 本书聚焦在产品运营的角色上,探讨产品运营人员应该如何理解推荐算法,如何在不同的功能场景下应用推荐算法,如何从平台业务的角度对算法结果进行干预和再平衡。此外,本书着重于阐述不同功能场景下推荐的应用,辅以内容、电商、社交等业务下的应用实例。在每个章节中,都会枚举市面上已有产品功能或作者本人经历过的业务实践,以期给读者提供可以实操落地的借鉴。
本书的主要内容有:深入探讨BigQuery的内部工作方式,包括其整体架构。学习BigQuery支持的数据类型、函数和运算符。优化查询语句和schema,从而提高性能或降低成本。使用标准SQL中高级功能,如GIS、历史快照、DDL/DML、用户定义函数和脚本。使用BigQuery ML解决各类机器学习问题。学习如何保护数据、监控作业,以及授权用户。