Ricci流理论是微分几何的热点之一。利用Ricci 流,HamiIton证明了任何紧致的具有正Ricci曲率的 三维流形微分同胚于空间球形式。从那时起, Ricci流就被用来解决在黎曼几何和三维拓扑中长时 间未被解决的公开问题。 《Ricci流与球定理》主要研究在Ricci流下黎曼 度量的发展方程,特别是高维Ricci流的收敛性理论 及其在微分球定理方面的应用,并展示了作者在所涉 及内容提供的不同的视角及论证。 本书作者Simon Brendle(布伦德),德国数学家 。2012年获得第六届欧洲数学会奖,用以表彰他在几 何偏微分方程以及椭圆、双曲、抛物线型系统方面的 杰出贡献。 《Ricci流与球定理》为作者在苏黎世联邦理工 学院开设的一个文凭课程的讲义,可作为数学研究生 教材,也可作为年轻科研人员的参考书。
From the reviews of the 1st edition: "Thisbook provides a prehensive and detailed account of differenttopics in algorithmic 3-dimensional topology, culminating with therecognition procedure for Haken manifolds and including theup-to-date results in puter enumeration of 3-manifolds.Originating from lecture notes of various courses given by theauthor over a decade, the book is intended to bine thepedagogical approach of a graduate textbook (without exercises)with the pleteness and reliability of a research monograph---All the material, with few exceptions, is presented from thepeculiar point of view of special polyhedra and special spines of3-manifolds. This choice contributes to keep the level of theexposition really elementary. In conclusion, the reviewersubscribes to the quotation from the back cover: "the book fills agap in the esting literature and will bee a standard referencefor algorithmic 3-dimensional topology both for graduate studentsand researchers".R. Piergallini, Zentralblattfilr Mathematik 1048(