全书基本涵盖了《高等数学》中所需的初等数学内容。本书按初等数学的学习顺序分八章进行编写,章代数式、第二章方程与不等式、第三章函数概念与二次函数、第四章指数函数与对数函数、第五章数列、第六章三角函数、第七章平面解析几何、第八章复数简介。每章后附有精选的习题,全书的最后给出了习题的答案和证明题的提示。本书的编写精简、扼要,能在较短的时间内补足学习《高等数学》所需的预备知识。 本书适合于各大专院校的学生复习;各类国家高等教育自学考试的学生、网络学院的学生、广播电大的学生自学补习或集体补习初等数学之用。
逻辑学是研究思维形式的结构及其规律以及认识事物的简单逻辑方法的科学。逻辑学作为思维科学,与人的智能的培养与提高联系极其密切。逻辑学具有全人类性、基础性、工具性与规范性,被称为人类成员都得学习与掌握的“思维的语法”。学习逻辑学,有助于培养和提高认知自学能力,有助于培养与提高理论素养,有助于培养和提高科学研究能力,有助于培养和提高思维素质。逻辑学在智力开发、思维素质的培养与提高方面,具有其他学科与课程不可替代的重要作用。当今世界,逻辑学已渗透到许多学科领域,诸如哲学、心理学、计算机科学、语言学、物理学、法学、伦理学等。许多国家,尤其是欧美发达国家对逻辑的研究和普及倾注了巨大的人力、财力、物力。20世纪80年代,联合国教科文组织正式将逻辑学列为数、理、化、天、地、生同等重要的基础学科。
本书是配合同济应用数学系主编的《高等数学》(第四、五版)的辅导,全书将高等数学中的基本知识分为26个专题,每个专题从概念、定理、问题,典型例题与解题方法,常见错误剖析和练习题等四个方面对所介绍的知识进行深化、归纳总结。书中对基本概念与定理作了进一步的诠释,并回答教学中的一些概念性问题。对精选的各类问题的解法与证法加以总结,同时,阐明各类解题方法适用题型所具有的特征。针对读者容易忽视或混淆的问题及易犯的概念性与解题错误进行剖析。练习题分为A和B两类,A类为基础题,B类为提高,书末有答案与提示。本书可作为高等院校师生的教学参考书,还可作为硕士研究生入学考试的复习资料和自学考试有关人员的复习课本。
本书系统地介绍分数阶微积分学与分数阶控制领域的理论知识与数值计算方法。特别地,作者提出并实现一整套高精度的分数阶微积分学的数值计算方法;提出线性、非线性分数阶微分方程的通用数值解法和基于框图的通用仿真框架,为解决分数阶控制系统的仿真问题奠定了基础;开发面向对象的分数阶系统控制的MATLAB工具箱,可以用于多变量分数阶系统的建模、分析与控制器设计的全过程。本书所有知识点均配有高质量的MATLAB代码,有助于读者更好地理解知识点的内涵,更重要地,可以利用代码实践并创造性地解决相关问题。
本书系统地介绍分数阶微积分学与分数阶控制领域的理论知识与数值计算方法。特别地,作者提出并实现一整套高精度的分数阶微积分学的数值计算方法;提出线性、非线性分数阶微分方程的通用数值解法和基于框图的通用仿真框架,为解决分数阶控制系统的仿真问题奠定了基础;开发面向对象的分数阶系统控制的MATLAB工具箱,可以用于多变量分数阶系统的建模、分析与控制器设计的全过程。本书所有知识点均配有高质量的MATLAB代码,有助于读者更好地理解知识点的内涵,更重要地,可以利用代码实践并创造性地解决相关问题。
国际大学生数学竞赛是国际上较高层次的大学生参加的别数学竞赛。本书汇集了从第1届至17届国际大学生数学竞赛的试题及其解答.本书适合于大学数学系师生及相关专业研究人员和数学爱好者使用。
《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的适用对象包括:中学信息学奥林匹克竞赛选手及辅导老师、大学ACM程序设计比赛选手及教练、高等院校计算机相关的师生、程序设计爱好者等。数学是计算机程序设计的灵魂。利用数学方面的知识、数学分析的方法以及数学题解的技巧,可以使得程序设计变得轻松、美观、高效,而且往往能反映出问题的本质。在外各项程序设计比赛(比如,ACM、NOI)活动中,越来越多地用到各种复杂的数学知识,对选手的数学修养要求越来越高。编写《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的目的就在于给广大ACM队员、NOI选手以及编程爱好者,分析一些程序设计中常用的数学知识和数学方法。