本书是利用作者A.б.瓦西里耶娃在20世纪60年代提出的“边界层函数法”,对奇异地依赖于小参数的常微分方程组、积分一微分方程组和时滞微分方程组等各种非线性系统定解问题进行近似求解和渐近分析的专著。其特点是系统地论述该方法的理论基础和运用该方法对各种问题的渐近解进行构造的过程,而且对定理、命题和结果都给出详细的推导和论证,是一本关于这类非线性微分方程组奇异摄动问题的基本理论著作。 本书适合于从事渐近方法的研究生、、应用数学工作者以及需要处理各种非线性奇异摄动方程组数学模型的科技工作者,对于需要求解非线性方程组的物理、力学和工程技术人员也是一本有用的参考书。
《自动控制中的线性代数》共 9 章. ~4 章详细论述线性空间、矩阵和线性代数、线性映射和线性空间的分解. 第 5~9 章讨论线性映射和矩阵的分解(包括谱分解、奇异值分解、满秩分解和极分解)、范数、矩阵函数, 是解线性定常状态方程所需的矩阵指数函数, 线性映射与矩阵的广义逆, 矩阵方程(包括线性矩阵方程、连续时间和离散时间代数 Riccati 方程), 以及线性代数在自动控制中的应用(包括 Lyapunov 稳定性理论、可控可观测性及可镇定可检测性分析、传递函数矩阵在RH∞ 中的互质分解、Hankel 算子的 Schmidt 分解).