本书强调严格性和基础性, 书中的材料从源头——数系的结构及集合论开始, 然后引向分析的基础(极限、级数、连续、微分、Riemann积分等), 再进入幂级数、多元微分学以及Fourier分析, 最后到达Lebesgue积分, 这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。书中还包括关于数理逻辑和十进制系统的两个附录.课程的材料与习题紧密结合, 的是使学生能动地学习课程的材料, 并且进行严格的思考和严密的书面表达的实践。 本书适合已学过微积分的高年级本科生和研究生学习。
本书是《AutoCAD工程师案头书》系列丛书之《AutoCAD VBA函数库查询辞典》,是针对AutoCAD 有基础的用户的精华案头书。本书主要针对AutoCAD中VBA的IDE环境作了详细的阐述。对各个指令的属性、方法、对象都进行详尽的介绍,使读者能够在设计过程中运用不同的指令,增强改善AutoCAD的绘图能力,提升自己的专业水平。本书讲解详细,查询方便,适合作为AutoCAD工程师进行VBA函数语法查询的案头书。
《多复变函数论》包含多复变函数研究中分析、层论与复几何这三个最主要方面的主要研究成果与方法。较之外相应的多复变函数著作,本书的内容更全面,而且通过阅读本书,读者可以充分了解多复变函数与几何、拓扑、方程和实分析等相关分支的交叉关系。 《多复变函数论》的撰写尽可能地适于自学之用,主要读者对象为数学系高年级本科生、研究生与青年教师,同时也可供其他理工科专业本科生、研究生、青年教师及相关工程技术人员学习参考之用。
《多项式和多项式不等式(英文版)》是springer数学研究生教材(gtm)61卷,主要介绍多项式和有理函数,重点论述代数多项式和三角多项式的特性,同时也介绍了多项式几何、正交多项式、切比雪夫和马可夫系、müntz系和müntz-type型稠密性定理,以及不等式用于多项式和有理函数等理论。其中有些内容较同类图书更加全面。目次:导论和基本特性;特殊多项式;切比雪夫和笛卡儿系;稠密性问题;基本不等式;müntz空间中的不等式;有理函数空间中的不等式。 读者对象:数学及相关专业研究生和科研人员。