CIMPA-UNESCO-CHINA暑期学校“自守形式与L-函数”于2010年8月1日至14日在山东威海校区举办,该国际暑期学校受联合国教科文组织资助,邀请的演讲人都是本领域的专家。刘建亚主编的《自守形式与L-函数》汇集了这次暑期学校以下演讲人的讲义:J.Cogdell,G.Harcos,李小青,P.Michel,A.Reznikov,F.Shahidi以及叶扬波。《自守形式与L-函数》涵盖自守形式、L-函数、谱理论及表示理论等方面的内容,既给出了自守形式与L-函数很好的介绍,也指出了其算术应用。《自守形式与L-函数》不仅是本领域专家们有价值的参考书,也是研究生开展研究时极好的入门书。
《复变函数及其应用》针对理工科应用类专业的教学需求,编写中力求简明易懂、深入浅出、文字精炼、思路清晰、重点突出、篇幅适当,例题的选择强调典型性和覆盖性,难度适当。在吸取现有教材优点的基础上,适度加强了基础知识,增多了应用实例。为减少读者在手工演算上过多花费精力,加入了计算机软件matlab应用的介绍。 本书适于各类工科、经济学、管理学等专业读者学习参考。
《中学数学解题前沿方法荟要:解方程及方程组的方法》以通俗的语言、简洁流畅的叙述,针对解方程及方程组方法的问题,分别归类介绍各自的解题方法与技巧,并予以适当的点评例说,以便触类旁通.这种分类介绍的解题方法,我们将其称为解题的“个类方法”.
本书是复分析领域近年来产生了广泛影响的一本著作。作者独辟蹊径,用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学美,书中讲述的内容有作为变换看的复函数、默比乌斯变换、微分学、非欧几何学、环绕数、复积分、柯西公式、向量场、调和函数等。 本书可作为大学本科生或研究生的复分析课程教材或参考书。
本书是一部备受专家好评的教科书,书中用现代的方式清晰论述了实分析的概念与理论,定理证明简明易懂,可读性强,全书共有200道例题和1200例习题。本书的写法像一部文学读物,这在数学教科书很少见,因此阅读本书会是一种享受。
递推数列多年来一直是数学竞赛的命题来源,对于的竞赛选手及教练来说已不是难题。而利用差分方法求解数列问题有很多优点。《差分方程的拉格朗日方法:从一道2011年全国高考理科试题的解法谈起》从一道2011年全国理科试题的解法谈起,首先全文摘录了一篇作者23年前发表的小文章。然后再进行现实的联系并进而介绍差分方程理论的完整体系。并进一步介绍了俄罗斯数学家在差分方程解的稳定性方面的前沿结果。《差分方程的拉格朗日方法:从一道2011年全国高考理科试题的解法谈起》适合于的初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等院校教师和学生的学习用书及数学爱好者的兴趣读物。