罗巴切夫斯基、库图佐夫编著的《罗巴切夫斯基几何学及几何基础概要》讲述罗巴切夫斯基几何学及几何基础概要,共为八章,章与欧几里得公设等价的一些命题第二章关于罗巴切夫斯基几何的一些事实第三章在罗巴切夫斯基平面上的相互位置,第四章罗巴切夫斯基几何的面积论,第五章欧几里得《几何原本》概观第六章基本对象,基本对象间的基本关系及几何公理,第七章几何体系的解释观念,第八章公理的协和型和独立性,同构。《罗巴切夫斯基几何学及几何基础概要》适合大、中学师生及数学爱好者的使用和收藏。
本书是一本全面介绍分形几何理论及其在各领域应用的专著。全书分成两部分,部分阐述了分形与分形几何的一般理论,包括维数的各种概念及计算方法,分形的局部结构,分形的射影、乘积和交集等;第二部分主要是分形的应用举例,包括自相似集和自仿射集、函数的图、数论和纯数学中的例子、动力系统、Julia集、分形及物理应用等。本书还提供了课程建议和较为全面的参考文献。 本书对分形的介绍深刻而全面,可作为数学工作者和科研人员学习分形的参考书;合理地选择适当的章节,也可作为高年级本科生和研究生的教材。
黄家礼编著的《几何明珠(第3版)》以著名的平面几何定理为素材,系统地介绍了这些定理的历史渊源及各种巧妙简捷的证明与解法,得出许多美妙有趣的引申和推广,并挖掘出这些定理在解题中的一些典型新颖的应用。全书内容丰富、通俗易懂、深入浅出、妙趣横生,对激发兴趣,锻炼机敏的思维能力将大有裨益。《几何明珠(第3版)》可作为大、中学生的课外读物,也可作为中学数学教师的教学参考资料。该书版于1997年由科学普及出版社出版,并获2001年湖北省论著一等奖;第二版于2000年由台湾九章出版社出版。
罗巴切夫斯基、库图佐夫编著的《罗巴切夫斯基几何学及几何基础概要》讲述罗巴切夫斯基几何学及几何基础概要,共为八章,章与欧几里得公设等价的一些命题第二章关于罗巴切夫斯基几何的一些事实第三章在罗巴切夫斯基平面上的相互位置,第四章罗巴切夫斯基几何的面积论,第五章欧几里得《几何原本》概观第六章基本对象,基本对象间的基本关系及几何公理,第七章几何体系的解释观念,第八章公理的协和型和独立性,同构。《罗巴切夫斯基几何学及几何基础概要》适合大、中学师生及数学爱好者的使用和收藏。
调和映照是流形间映照能量泛函的临界点,是几何中测地线以及极小曲面概念的自然推广。 《调和映照讲义》分两部分。部分根据作者于1985年在美国加州大学San Diego分艘作关于调和映照课题的系列演讲的内容整理而成。这一部分致力于黎曼面上的调和映照。内容包括Teichmuller空间的紧化,Sacks-Ulenbeck在极小球面的基本工作和不可压缩极小曲面的工作以及运用调和映照来证明的Frankel猜想等。 《调和映照讲义》第二部分的头两章中,讨论了调和映照的正则性理论,其中目标空间可以不是良好的流形。第二部分还包括将调和映照理论用来研究负曲率流形的拓扑性质。《调和映照讲义》最后一章用调和映照方法对的Mostow的刚性定理和Margulis超刚性定理给出概念上和原始证明不同的全新的证明。《调和映照讲义》可作为研究生教材,也可供高等学校数学系及物理系研
为科学、客观地评价地表水环境质量,有效地促进《水污染防治行动计划》的实施,基于调整后的“十三五”国家地表水环境质量监测网获取的自动和手工监测数据,形成了一系列数据融合、评价、考核、排名计算方法和技术要求。包括在地表水环境质量标准基础上延伸形成的地表水环境质量评价技术要求、《水污染防治行动计划》地表水环境质量考核技术要求、地级及以上城市国家地表水考核断面水环境质量排名技术要求、地表水环境质量监测数据统计技术要求和地表水环境本底判定技术要求。这些技术要求均以办法或技术规定的形式下发,指导水环境质量报告编制、信息发布、质量考核、城市排名等工作,为水环境管理提供了重要技术支撑。 《“十三五”时期国家地表水环境质量评价技术要求》将相关技术要求汇总编制并提供部分报告实例,供从事地表水
《基于生态系统管理的黑河流域法律政策能力评估》系统阐述了黑河流域管理法律政策能力评估开展的必要性,介绍了法律政策评估的理论和实践,通过梳理黑河流域法律政策建设的概况,从价值、质量、意义、实施等方面对黑河流域法律政策能力进行多方位的综合考察和实证分析。研究显示,现行法规制度基本上能够覆盖黑河流域管理涉及的职责,法律政策能力建设上基本形成了以国家立法为指导,以流域专项法规制度为主体,以区域具体制度为补充的三位一体的流域管理体系。但要进一步巩固管理取得的前期成果,短期内,急需加强对重要水工程建设的管理等方面,而长期则需要制定一部黑河流域水资源的基本法以从根本上确保流域统一管理的实现。
《世界数学经典著作钩沉(立体几何卷)》取材于前苏联А.П.吉西廖夫和Н.А.格拉哥列夫所编的《初等几何学(立体部分)》。全书共分三章,分别为章直线和平面,第二章多面体,第三章旋转体。《世界数学经典著作钩沉(立体几何卷)》适合于、中学师生及数学爱好者。
本书是关于取值于Banach空间的鞅与Banach空间几何理论的专著,全书分为8章,在介绍了向量测度与积分、条件期望的基础知识以后,一方面叙述鞅与鞅型序列的极限定理,独立增量鞅的大数定律、中心极限定理、重对数律、鞅不等式与鞅空间、鞅变换等问题;另一方面研究Banach空间的几何性质,包括RN性质、型和余型、一致凸与一致光滑性、无条件鞅差序列性质、复空间的几何性质等,在整个叙述中,过程的概率性质、函数空间的分析性质与值空间的几何性质是有机结合在一起的,所得结果在现代概率与现代分析的多种领域里都具有重要意义。本书内容属于概率论、调和分析与泛函分析的交叉学科领域,因此可作为相关专业的研究生、本科生与数学工作者的或参考书。
《现代数学基础丛书:拓扑群引论(第二版)》介绍了拓扑群的基本概念、测度与积分、拓扑群(特别是紧、局部紧的拓扑群)的表示,同时讨论齐性空间、群代数和K理论的一些相关结果.内容由浅入深,直至近代的重要成果。
介绍气候模式中冰冻圈分量的模拟现状和未来发展趋势,包括海冰,积雪,冻土等模拟的发展历史和存在问题。介绍气候模式中冰冻圈分量的模拟现状和未来发展趋势,包括海冰,积雪,冻土等模拟的发展历史和存在问题。介绍气候模式中冰冻圈分量的模拟现状和未来发展趋势,包括海冰,积雪,冻土等模拟的发展历史和存在问题。
《光滑流形导论》是一部介绍光滑流形的入门(全英文版)。是针对已经对一般拓扑、基本群、覆盖空间以及基本的线性代数与实分析有较好掌握的本科生和研究生。旨在让学生和相关的工作人员熟练地掌握和运用流形这个重要的数学工具。《光滑流形导论》主要介绍了光滑结构,切向量和余向量,向量丛,李导数,浸入和嵌入式子流形,李群和李代数。在讲述上运用图形以及直观的讨论使得内容尽可能的清晰易懂,更重要的是讲述如何用几何的方法思考抽象概念;同时,现代数学方法提供的有力工具得到了充分展示。《光滑流形导论》还提供了一些很重要的流形能够提供的几何结构的例子。
《中国数学会史》为“中国现代教育社团史”丛书的分册之一。该书主要介绍了中国数学会的历史和变迁。全书共9章,以及绪论、附录、人名索引等。该书分别介绍了中国数学会的成立背景、中国数学会的成立、中国数学会的第二次至第七次年会、中国数学会数学研究成果的获奖、南中国数学会、中国数学会的贡献和启示等等。 该书对中华职业教育社做了准确、完整的表述。准确写出了中华职业教育社变化的节点。完整写出了中华职业教育社的产生、存续、发展过程,完整地陈述了中华职业教育社的组织结构、活动规模、活动方式、社会影响等。该书以史料为依据,实事求是地还原了历史,所有叙述力求多方面足够的史料做支撑,是一部很好的史学学术研究著作。
《世界数学经典著作钩沉(立体几何卷)》取材于前苏联А.П.吉西廖夫和Н.А.格拉哥列夫所编的《初等几何学(立体部分)》。全书共分三章,分别为章直线和平面,第二章多面体,第三章旋转体。《世界数学经典著作钩沉(立体几何卷)》适合于、中学师生及数学爱好者。
本书概要地讲述了《张量分析及在力学中的应用》的各章内容之精华,并给出了该书的习题全解。全书共分9章,、2章介绍张量的基础知识,第3~6章介绍张量代数、张量分析和黎曼空间的曲率,第7、8章介绍张量分析在弹性力学和损伤力学中的应用,第9章介绍Matlab/Mathematica在矩阵和张量演算中的应用。本书可作为大学数学、物理、力学、天文、航空、航天、土木、水利、交通、信息和管理学科的研究生和高年级大学生的参考教材,也可供相关专业的研究人员、工程技术人员和青年教师自学参考。
点集拓扑是整个拓扑学以及现代分析学的基础,主要研究拓扑学的基本性质,如拓扑空间的紧致性、分离性、连通性等。全书共3章,章介绍拓扑空间与拓扑不变性,给出相关的概念与定理,并证明了重要的Urysohn引理、Tietze扩张定理与可度量化定理;第2章给出各种构造新拓扑空间的方法,讨论子拓扑空间的遗传性、拓扑有限空间的有限可积性、拓扑积空间的可积性以及商拓扑空间的可商性;第3章引进拓扑空间的基本群的概念,并特别介绍覆叠空间理论。
《离散几何讲义(英文影印版)》旨在为读者提供一本学习离散几何的引入教程,主要内容包括凸集,凸多面体和超平面的安排;几何构型的组合复杂性;交叉模型和凸集的截面;几何ramsey型结果;有限几何空间嵌入到赋范空间等。在好多应用领域,都可以涉及到这里的很多结果和方法。目次:凸性;点格和minkowski定理;凸独立子集;事件问题;凸多面体;下包络;凸集的相交模型;几何选择定理;计数k-集;高维多面体的两个应用;高维中的体积;测度集聚和球面集;嵌入有限度量空间到赋范空间。读者对象:数学专业的本科生、研究生和相关领域的科研人员。
曼克勒斯编著的《初等微分拓扑学》讲述微分拓扑学、特别是它的几何方面的基本内容,不涉及代数拓扑的结果与方法,全书共分两章,章微分流形,讲述了有关微分流形的一些经常用而不证的基本事实的证明;第二章微分流形的剖分,讲述光滑部分的存在性和唯一性,书中在每一个基本概念或定理之后都有习题和问题,便于读者思考。《初等微分拓扑学》可供高等学校数学系拓扑专业作为教学参考书。
《分形几何与流体》是瞿波在英国龙比亚大学攻读博士的学位论文的核心成果,深入浅出地介绍了分形及其在流体中的应用,详细论述了如何用分形中的分数布朗运动模拟流水中污染物的轨迹,包括对海湾和海洋中污染物传播轨迹的模拟。是一本实用性强、浅显易懂的应用数学学习和研究的参考用书。
本书是一部介绍不动点理论及其应用的入门教程。内容范围广阔,但并不是为增加书的篇幅而包括所有可能的结果,涉及从经典标准结果到前沿成果。
杰洛涅编著的《世界著名解析几何经典著作钩沉(平面解析几何卷)》共分为三编,分别为:编平面上的直线;第二编椭圆、双曲线、抛物线;第三编二阶曲线的一般理论。本书适合大学生、中学生及平面解析几何爱好者阅读。