几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神.本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“ ”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值.本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
本书概要地讲述了《张量分析及在力学中的应用》的各章内容之精华,并给出了该书的全部习题全解。全书共分9章,、2章介绍张量的基础知识,第3~6章介绍张量代数、张量分析和黎曼空间的曲率,第7、8章介绍张量分析在弹性力学和损伤力学中的应用,第9章介绍Matlab/Mathematica在矩阵和张量演算中的应用。本书可作为大学数学、物理、力学、天文、航空、航天、土木、水利、交通、信息和管理学科的研究生和高年级大学生的参考教材,也可供相关专业的研究人员、工程技术人员和青年教师自学参考。
《实用化学手册》包括与无机、分析、有机和物理化学有关的常用物质的基础数据。数据新、全,有很强的实用性。应是高校师生、科研机构及化工生产部门从事相关人员的良师益友。
本书基于修正狄拉克方程,全面描述了一维到三维拓扑绝缘体。书中公式推导简明易懂,给出了一系列边界附近束缚态解的推导,并描述了解的存在条件。引进了拓扑绝缘不变性及其在一些列系统中的应用,如一维聚乙炔到二维量子自旋霍尔效应、p波超导体、三维拓扑绝缘体、超导体和超流。这些都可以很好地帮助学习者更好的理解这个神奇的领域。读者对象:本书是一部拓扑绝缘体专业及相关领域研究生和科研人员的教材和参考用书。
本书是作者在多年的教学、科研和应用非正式出版的基础上,参考大量的书籍和文献编写而成的。其特点是:尽量减少数学推导,偏重于基本概念和应用实例;尽量反映当代无机固态学科中的成果;注重与其他学科,尤其是新材料学科的联系;突出固体无机化学在当代高新技术领域中的地位和作用。
《离散几何讲义(英文影印版)》旨在为读者提供一本学习离散几何的引入教程,主要内容包括凸集,凸多面体和超平面的安排;几何构型的组合复杂性;交叉模型和凸集的截面;几何ramsey型结果;有限几何空间嵌入到赋范空间等。在好多应用领域,都可以涉及到这里的很多结果和方法。目次:凸性;点格和minkowski定理;凸独立子集;事件问题;凸多面体;下包络;凸集的相交模型;几何选择定理;计数k-集;高维多面体的两个应用;高维中的体积;测度集聚和球面集;嵌入有限度量空间到赋范空间。 读者对象:数学专业的本科生、研究生和相关领域的科研人员。
这本书旨在让读者清晰明了地接触广义相对论,广义相对论的引入,从大爆炸到黑洞,这样很容易激起读者对物理学的浓厚兴趣。附录中提供了大量的数学材料来帮助读者理解正文,而且附录的很多部分本身也是独立完整的。 本书的结构,章主要介绍狭义相对论和基本张量代数,包含一个场论的简要概述。紧接着的两章引入流形和曲率,包含一些具有激发性的物理知识,但主要目标是建立数学框架。第四章引入广义相对论,并且给出一些择一性定理的讨论。紧接着的四章主要讨论广义相对论的主要用途:黑洞,扰动理论和引力波,以及宇宙学。这些章节都贯穿有试验性结论的讨论,使得这些理论的实用性马上显现出来。 本书很适合物理系高年级本科生、研究生以及对广义相对论感兴趣的读者。 注:本书为全英文版。
杰洛涅编著的《世界著名解析几何经典著作钩沉(平面解析几何卷)》共分为三编,分别为:编平面上的直线;第二编椭圆、双曲线、抛物线;第三编二阶曲线的一般理论。 本书适合大学生、中学生及平面解析几何爱好者阅读。
本书先讲定理的构成及推证方法.如命题的条件与结论,直接证法与间接证法,综合证法与分析证法,演绎法,归纳法,数学归纳法等,使读者对证题方法有一个较全面的了解.然后列出几何证明题463个,其中大约2/3为平面几何题,1/2为立体几何题.每题均有解答,但解答并不附在各题之后,而放在书的后半部.这样可令读者先独立解答,然后再与书上的解答对照,而不削弱读者的创造性. 本书适合初、高中师生,师范类院校及教育学院师生使用.
《微积分和数学分析引论(第2卷)(第1册)(英文版)》在内容以及形式上有如下三个特点:一是读者直达本学科的核心内容;二是注重应用,指导读者灵活运用所掌握的知识;三是突出了直觉思维在数学学习中的作用。作者不掩饰难点以使得该学科貌似简单,而是通过揭示概念之间的内在联系和直观背景努力帮助那些对这门学科真正感兴趣的读者。 《微积分和数学分析引论(第2卷)(第1册)(英文版)》各章均提供了大量的例题和习题,其中一部分有相当的难度,但绝大部分是对内容的补充。另外,《微积分和数学分析引论(第2卷)(第1册)(英文版)》附有一本专门的习题册,并且给出了习题的提示与解答。