李继根等编的《矩阵分析与计算》是基于编著者多年从事矩阵分析类课程的教学改革实践经验,并结合学生的实际情况编写而成的,可作为高等院校理工科各专业研究生和工程硕士学习矩阵分析等相关课程的教材,也非常适合理工科高年级本科生学完线性代数课程后进一步学习之用。全书分为线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题七章。该教材既注意系统性,又注重体现工科特色,深广度适中,并适当略去了一些定理的证明。书中注重启发式教学,采用多种方式自然地引入基本概念和基本方法。同时,行文时非常注重几何直观及与类比,力争做到深入浅出、简洁易懂,以便于自学。书中还穿插了许多矩阵计算知识,并附有大量matlab代码,以渗透科学计算思维。此外,书中加入的大量数学史
佩捷、王忠玉、欧阳维诚编著的《从费马到怀尔斯费马大定理的历史》介绍了关于费马大定理的历史,并详细介绍了证明费马大定理的艰难历程。
潘承洞与潘承彪所著的《代数数论》在初等数论的基础与观点之上,以尽可能少的抽象代数概念与方法,来具体地介绍代数数论中最经典、最基本、因而也是最初等的内容。它取材恰当,概念的引进自然、清楚。从具体到抽象、特殊到一般的写法。以及配有适当的例题和习题,使初学者容易理解、掌握,而且所得到的实质性结论并不比通常的代数数论要少。 《代数数论》适用于大中师生和数学爱好者。
程代展、齐洪胜所著的《矩阵的半张量积理论与应用(第二版)》介绍了一种新的矩阵乘法,称为矩阵的半张量积。它将矩阵的普通乘法推广到任意两个矩阵,这种推广不仅保持了原矩阵乘法的所有基本性质,而且具有一定程度的可交换性,使矩阵方法可方便地应用于逻辑函数、高维数组及非线性问题。本书前5章介绍半张量积定义及基本性质,后7章为其各种应用,包括数理逻辑及基于逻辑的智能系统,对微分几何及抽象代数中的一些基本问题的应用,非线性控制系统的镇定,动态系统的对称性,非线性系统的稳定域估计,系统控制中的Morgan问题及线性化问题。
《数论经典著作系列:解析数论基础》以解析数论的三个问题:素数分布、Goldbach问题和Waring问题为中心,很好地阐明了解析数论的三个重要方法:复积分法、圆法及三角和法本书的特点是少而精,叙述和证明简洁阅 读本书仅需要初等数论、微积分及复变函数基础知识,书中有不少习题,其中一些是近代解析数论的最重要的成果,读者可通过这些习题了解近代解析 数论的研究领域。本书可供大专院校数学系师生、研究生及有关的科学工作者阅读
《代数方程式论》由迪克森所著,为美国著名数学家迪克森的一本代数学经典著作,包括上、下两编,共十一章,对了解代数方程式论的历史是很好的素材。 《代数方程式论》适合大中专师生及数学爱好者阅读及收藏。
本书以解析数论的四个问题:平面区域内的整点问题、素数分布问题、Goldbach问题和Waring问题为中心,很好地阐明了解析数论的三个重要方法:复积分法、圆法及三角和法.本书的特点是少而精,叙述和证明简洁.阅读本书仅需要初等数论、微积分及复变函数基础知识.书中每章后都配有习题,其中一些是近代解析数论的最重要的成果,读者可通过这些习题了解近代解析数论的研究领域. 本书可供大专院校数学系师生、研究生及有关的科学工作者阅读.
本书是利用作者A.б.瓦西里耶娃在20世纪60年代提出的“边界层函数法”,对奇异地依赖于小参数的常微分方程组、积分一微分方程组和时滞微分方程组等各种非线性系统定解问题进行近似求解和渐近分析的专著。其特点是系统地论述该方法的理论基础和运用该方法对各种问题的渐近解进行构造的过程,而且对定理、命题和结果都给出详细的推导和论证,是一本关于这类非线性微分方程组奇异摄动问题的基本理论著作。
《解析数论导论(英文版)》是一部为本科生提供学习数论的基本思想和技巧的教程,重点强调解析数论。前五章讲述可约性、收敛和算术函数等基本概念。紧下来的章节讲述序列中素数的狄利克莱定理、高斯和、二次剩余、狄利克莱级数和欧拉积及其在黎曼zeta函数和狄利克莱函数中的应用,并且引进了划分的概念。书中每章末都收集了大量练习。前十章,除去章,任何具备基本微积分知识的人都可以读懂;最后四章需要对复函数理论(包括复积分和留数积分)的了解。
吴悦辰编著的《三线坐标与三角形特征点》主要包括十章:三线坐标和重心坐标,三角形的特征点( 一)——一些经典的几何特征点,三角形的特征点(二 )——一些与透视相关的几何特征点,三角形的特征点(三)——共轭与变换,三角形的特征点(四)一一其他几何特征点,形形色色的直线,形形色色的三角形,形形色色的圆,三角形的二次曲线,三角形的三次曲线。 本书适合数学爱好者参考阅读。
代数几何是近代以来发展迅速的一门数学的分支学科,与其他领域的许多学科有着紧密的联系,也是高等院校数学专业研究生阶段所开设的一门非常重要的基础课程。 本书是时下为数不多的代数几何的经典之一,已被众多学校用做教学参考书。与本书相配套的《The Red Book of Varieties and Schemes》和《Algebraic Geometry GTM52》也已影印出版。本书是由作者多年来在各处讲授代数几何课的笔记,经多次修订后整理成册。全书的前一部分主要介绍了复射影簇,后一部分则重点探讨了概型,内容包括概型的凝聚层的上同调与应用。 本书适用于数学专业的研究生及需要相关知识的其他领域的专家学者。
本书是数学发展史上的一个里程碑,在很长一段时间,这是本讲述拓扑代数的教程。这本书堪称是一部同调代数经典,1956年初版,至今已有七次重印出版。这本书曾在纯代数领域引起过不小的轰动,作者企图将这个领域统一起来,并且为这个领域构建一个完整的框架。书中讲述的同调理论包含了群、李代数和结合代数上同调结构,大量的结果都包括在一般框架之中,但每个结果都有不同的讲述方式,并且每个理论的特殊性质都给出了具体的讲述。本书以环上的模作为出发点,基本计算有二模张量积,以及一个模到其他模的同态群。函子和导出函子也是自然而然的进行了讲述。目次:环和模;加性函数;卫星;同调;导出函子;u和hom的导出函子;积分域;增广环;结合代数;补充代数;乘积;有限群;李代数;扩张;谱序列;谱序列应用;超拓扑。 读者报对象
Expository books on the theory of Lie groups generally confinethemselves to the local aspect of the theory.This limitation wasprobably necessary as long as general topology was not yetsufficiently well elaborated to provide a solid base for a theoryin the large.These days are now passed, and we have thought that itwould be'useful to have a systematic treatment of the theory from aglobal point of view. The present volume introduces the main basicprinciples which govern the theory of Lie groups. A Lie group is at the same time a group, a topological space anda manifold: it has therefore three kinds of "structures," which areinterrelated with each other.The elem,entary properties ofabstractgroups are by now sufficiently well known to the generalmathematical public to make it unnecessary for such a book as thisone to contain a purely group-theoretic chapter.The theory oftopo