本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,不仅包括由于数学分析的需要而产生的线性代数的论题,还广泛选择了其他相关学科如微分方程、*化、逼近理论、工程学和运筹学等有关的论题。本书主要内容有:特征值、特征向量和相似性、酉相似、schur三角化及其推论、正规矩阵、标准形和包括jordan标准形在内的各种分解、lu分解、qr分解和酉矩阵、hermite矩阵和复对称矩阵、向量范数和矩阵范数、特征值的估计和扰动、正定矩阵、非负矩阵。 本书逻辑清晰,结构严谨,既注重教学又注重应用。在每一章的开始,作者都介绍几个应用来引入本章的论题以激发学习兴趣。在章节末尾,作者还独具匠心地编排了许多具有探索性和启发性的习题,引导读者提高描述和解决数学问题的能力。本书是一本畅销的教材,对从事线性代数纯理论研究和应用研究的人
西格尔所著的《数》系统地介绍了数理论,内容分四章:章介绍了数论的一些古典结果;第二章专门讲述适合于齐次线性微分方程组的某些函数数值的代数无关性;第三章中证明了数ab的性,即著名的Hilbert第七问题;最后,第四章介绍了Schneider关于椭圆函数的算术性质方面的一些研究结果。 《数》适合于大学、中学师生及数学爱好者。
斐波那契数列,产生于12世纪意大利数学家斐波那契叙述的“生小兔问题”。从一个十分简明的递推关系出发,竟引出了一个充满奇趣的数列.它与植物生长等自然现象,以及几何图形、黄金分割、杨辉三角、矩阵运算等数学知识有着非常微妙的联系,并且在优选法、计算机科学等领域中得到广泛应用。吴振奎编著的《斐波那契数列欣赏》系统地介绍了斐波那契数列的性质和应用,将知识性与趣味性融为一体,阐述了几代数学家的思维方法,内容丰富,妙趣横生。《斐波那契数列欣赏》适用于大学、中学师生。
斐波那契数列的理论是初等数学中困难而有趣的问题,它与“高深数学”的历史、问题和方法有紧密的联系。从有名的兔子问题开始几乎经历了八百年久远的岁月。迄今为止。斐波那契数列仍然是初等数学中最吸引人的一章。和斐波那契数列有关的问题在许多数学普及读物中都会出现,在学校的数学小组中常作为教材,在数学奥林匹克中也常被提及。 这本书包含的问题是列宁格勒国立大学1949—1950学年学生数学小组的某些学习材料。根据小组参加者的愿望,偏重于研究数论方面的内容;在本书中对于这些问题作了比较详尽的阐述。 在书中论及整除理论和连分数理论,阅读这些内容,不需要超出中学课程范围的预备知识。 本书适用于大学、中学师生。
本书特色: 经典理论与现代应用相结合。通过丰富的实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等.新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范