本书涵盖非线性规划的主要内容,包括无约束优化、凸优化、拉格朗日乘子理论和算法、对偶理论及方法等,包含了大量的实际应用案例. 本书从无约束优化问题入手,通过直观分析和严格证明给出了无约束优化问题的*性条件,并讨论了梯度法、牛顿法、共轭方向法等基本实用算法. 进而本书将无约束优化问题的*性条件和算法推广到具有凸集约束的优化问题中,进一步讨论了处理约束问题的可行方向法、条件梯度法、梯度投影法、双度量投影法、近似算法、流形次优化方法、坐标块下降法等. 拉格朗日乘子理论和算法是非线性规划的核心内容之一,也是本书的重点.
本书强调严格性和基础性, 书中的材料从源头——数系的结构及集合论开始, 然后引向分析的基础(极限、级数、连续、微分、Riemann积分等), 再进入幂级数、多元微分学以及Fourier分析, 最后到达Lebesgue积分, 这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。书中还包括关于数理逻辑和十进制系统的两个附录.课程的材料与习题紧密结合, 的是使学生能动地学习课程的材料, 并且进行严格的思考和严密的书面表达的实践。 本书适合已学过微积分的高年级本科生和研究生学习。
本书各个部分形成独立的模块,重点讨论了偏微分方程中四种最基本的方程:传输方程、波动方程、热传导方程和位势方程的特点和相应定解问题的求解方法,特别对偏微分方程模型在物理、力学等学科中的应用问题给予了极大的关注,目的在于将偏微分方程的基本理论与其在实际问题中的应用之间架设一座桥梁,帮助读者了解近代物理学等学科中一些重要的偏微分方程的来龙去脉,从而掌握运用这些偏微分方程解决实际问题的基本方法。
This book is an abridged version of our two-volume opus Convex Analysis and Minimization Algorithms [18], about which we have received very positive feedback from users, readers, lecturers ever since it was published-by Springer-Verlag in 1993. Its pedagogical qualities were particularly appreciated, in the bination with a rather advanced technical material.
《中学数学解题前沿方法荟要:解方程及方程组的方法》以通俗的语言、简洁流畅的叙述,针对解方程及方程组方法的问题,分别归类介绍各自的解题方法与技巧,并予以适当的点评例说,以便触类旁通.这种分类介绍的解题方法,我们将其称为解题的“个类方法”.
《泛函分析(英文版)》在Princeton大学使用,同时在其它学校,比如UCLA等名校也在本科生教学中得到使用。其教学目的是,用统一的、联系的观点来把现代分析的“核心”内容教给本科生,力图使本科生的分析学课程能接上现代数学研究的脉络。
本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分. 第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题. 第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法. 第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相关,是处